This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048622 #16 Jun 29 2021 11:20:44 %S A048622 0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,2,1,2,1,0,0,2,1,0,0,0,0,0,1,3,2,1, %T A048622 1,3,2,1,0,2,1,2,1,1,0,0,0,2,2,1,0,1,1,3,2,3,2,0,0,2,0,0,0,4,3,4,3,2, %U A048622 2,3,3,5,4,3,2,2,1,2,1,3,2,1,1,2,1,0,0,1,1,3,2,1,0,0,0,3,2,2,2,4,2,2,2,3,2 %N A048622 Difference of maximal and central values of A001222 when applied to {C(n,k)} set. %H A048622 Michel Marcus, <a href="/A048622/b048622.txt">Table of n, a(n) for n = 1..5000</a> %F A048622 a(n) = Max_k {A001222(C(n, k))} - A001222(A001405(n)). %F A048622 a(n) = A048620(n) - A048621(n). - _Sean A. Irvine_, Jun 24 2021 %e A048622 n=24: the sums of prime factor exponents when k runs from 0 to 24 are {0,4,4,5,5,7,6,8,6,8,8,9,7,9,8,8,6,8,6,7,5,5,4,4,0}. The central value is 7, the maximal is 9 so a(24)=9-7. %o A048622 (PARI) a(n) = vecmax(apply(bigomega, vector(n+1, k, binomial(n,k-1)))) - bigomega(binomial(n, n\2)); \\ _Michel Marcus_, Jun 25 2021 %Y A048622 Cf. A001222, A046660, A020740, A048620, A048621. %K A048622 nonn %O A048622 1,18 %A A048622 _Labos Elemer_