This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048625 #38 Oct 25 2023 08:26:28 %S A048625 4,6,9,13,19,28,41,60,88,129,189,277,406,595,872,1278,1873,2745,4023, %T A048625 5896,8641,12664,18560,27201,39865,58425,85626,125491,183916,269542, %U A048625 395033,578949,848491,1243524,1822473,2670964,3914488,5736961,8407925,12322413,18059374 %N A048625 Pisot sequence P(4,6). %C A048625 Conjecture: satisfies a linear recurrence having signature (1, 0, 1). - _Harvey P. Dale_, Jun 05 2021 %H A048625 Colin Barker, <a href="/A048625/b048625.txt">Table of n, a(n) for n = 0..1000</a> %H A048625 <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a> %F A048625 a(n) = a(n-1) + a(n-3) (Checked up to n = 48000). %F A048625 G.f.: (conjecture) (( Q(0)-1)/2 -(x+x^2+x^3+2*x^4+3*x^5))/x^6, where Q(k) = 1 + x^3 + (2*k+3)*x - x*(2*k+1 + x^2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 05 2013 %p A048625 P := proc(a0,a1,n) %p A048625 option remember; %p A048625 if n = 0 then %p A048625 a0 ; %p A048625 elif n = 1 then %p A048625 a1; %p A048625 else %p A048625 ceil( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)-1/2) ; %p A048625 end if; %p A048625 end proc: %p A048625 A048625 := proc(n) %p A048625 P(4,6,n) ; %p A048625 end proc: # _R. J. Mathar_, Feb 12 2016 %t A048625 P[a0_, a1_, n_] := P[a0, a1, n] = Switch[n, 0, a0, 1, a1, _, Ceiling[P[a0, a1, n-1]^2/P[a0, a1, n-2] - 1/2]]; %t A048625 a[n_] := P[4, 6, n]; %t A048625 Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Oct 25 2023, after _R. J. Mathar_ *) %o A048625 (PARI) pisotP(nmax, a1, a2) = { %o A048625 a=vector(nmax); a[1]=a1; a[2]=a2; %o A048625 for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2)); %o A048625 a %o A048625 } %o A048625 pisotP(50, 4, 6) \\ _Colin Barker_, Aug 08 2016 %Y A048625 Subsequence of A000930. See A008776 for definitions of Pisot sequences. %K A048625 nonn %O A048625 0,1 %A A048625 _David W. Wilson_