This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048631 #27 Sep 30 2022 20:43:28 %S A048631 1,1,2,6,24,120,272,1904,15232,124800,848640,7507200,39738368, %T A048631 433441792,2589116416,30419859456,486717751296,8128101580800, %U A048631 132557598294016,1971862458400768,30421253686034432,512675443057623040,7176891455747129344,130521457800367308800 %N A048631 Xfactorials - like factorials but use carryless GF(2)[ X ] polynomial multiplication. %C A048631 In formula X stands for the multiplication in a ring of GF(2)[ X ] polynomials. %H A048631 Vaclav Kotesovec, <a href="/A048631/b048631.txt">Table of n, a(n) for n = 0..475</a> %H A048631 Vaclav Kotesovec, <a href="/A048631/a048631.jpg">Graph a(n+1)/a(n)</a> %F A048631 a(0) = 1, a(n) = n X a(n-1) (see the Maple function Xfactorial given below). %F A048631 Using the notations introduced in A355891, we have a(n) = ivgenpoly(Product_{i=1..n} genpoly(n)). As an example, n = 6 corresponds to 1*x*(x+1)*x^2*(x^2+1)*(x^2+x) = x^8+x^4 in GF(2)[x], so a(6) = 2^8 + 2^4 = 272. - _Jianing Song_, Sep 30 2022 %p A048631 Xfactorial := proc(n) option remember; if n=0 then 1 %p A048631 else Xmult(n, Xfactorial(n-1)) fi %p A048631 end: %p A048631 Xmult := proc(n, m) option remember; if n=0 then 0 %p A048631 else Bits[Xor](((n mod 2)*m), Xmult(floor(n/2), m*2)) fi %p A048631 end: %p A048631 seq(Xfactorial(n), n=0..23); %t A048631 Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; s]; %t A048631 Xfactorial[n_] := Xfactorial[n] = If[0 == n, 1, Xmult[n, Xfactorial[n - 1]] ]; %t A048631 Table[Xfactorial[n], {n, 0, 21}] (* _Jean-François Alcover_, Mar 04 2016, updated Mar 06 2016 after Maple *) %o A048631 (PARI) a(n)=my(s=Mod(1,2)); for(k=1,n, s*=Pol(binary(k))); fromdigits(Vec(lift(s)), 2) \\ _Charles R Greathouse IV_, Oct 03 2016 %Y A048631 Cf. A000142, A048720, A048632, A061922. %K A048631 easy,nonn %O A048631 0,3 %A A048631 _Antti Karttunen_, Jul 14 1999