This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048635 #18 Mar 07 2020 00:49:23 %S A048635 0,14,24,14,0,38,168,350,528,854,1848,4238,8736,16646,31944,64190, %T A048635 131376,265142,526680,1044974,2088768,4193126,8404200,16795166, %U A048635 33541200,67059734,134195064,268511054,536991840,1073711558,2147211528 %N A048635 Number of rational points of Klein curve over GF(2^n). %D A048635 N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. See p. 77 eq. (3.13), (3.14). %H A048635 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (4,-7,8,-4). %F A048635 a(n) = 2^n + 1 - 3*(a^n + b^n), where a, b are roots of X^2 - X + 2 = 0. %F A048635 From _Colin Barker_, Aug 01 2013: (Start) %F A048635 a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4). %F A048635 G.f.: 2*x^2*(8*x^2-16*x+7) / ((x-1)*(2*x-1)*(2*x^2-x+1)). (End) %e A048635 G.f. = 14*x^2 + 24*x^3 + 14*x^4 + 38*x^6 + 168*x^7 + 350*x^8 + 528*x^9 + ... %t A048635 LinearRecurrence[{4,-7,8,-4},{0,14,24,14},40] (* _Harvey P. Dale_, May 09 2017 *) %o A048635 (PARI) {a(n) = if( n<1, 0, 2^n + 1 - 3 * polsym(x^2 - x + 2, n)[n+1])}; /* _Michael Somos_, Nov 09 2014 */ %Y A048635 Cf. A002249. %K A048635 nonn %O A048635 1,2 %A A048635 _N. J. A. Sloane_