cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048671 a(n) is the least common multiple of the proper divisors of n.

This page as a plain text file.
%I A048671 #62 Feb 16 2025 08:32:40
%S A048671 1,1,1,2,1,6,1,4,3,10,1,12,1,14,15,8,1,18,1,20,21,22,1,24,5,26,9,28,1,
%T A048671 30,1,16,33,34,35,36,1,38,39,40,1,42,1,44,45,46,1,48,7,50,51,52,1,54,
%U A048671 55,56,57,58,1,60,1,62,63,32,65,66,1,68,69,70,1,72,1,74,75,76,77,78,1
%N A048671 a(n) is the least common multiple of the proper divisors of n.
%C A048671 A proper divisor d of n is a divisor of n such that 1 <= d < n.
%C A048671 Previous name was: a(n) = q(n)/q(n-1), where q(n) = n!/A003418(n).
%H A048671 Michael De Vlieger, <a href="/A048671/b048671.txt">Table of n, a(n) for n = 1..10000</a>
%H A048671 Peter Luschny and Stefan Wehmeier, <a href="http://arxiv.org/abs/0909.1838">The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences</a>, arXiv:0909.1838 [math.CA], 2009.
%H A048671 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SylvesterCyclotomicNumber.html">Sylvester Cyclotomic Number</a>.
%H A048671 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%F A048671 a(n) = A025527(n)/A025527(n-1).
%F A048671 a(n) = (n*A003418(n-1))/A003418(n).
%F A048671 a(n) = A003418(n-1)/A002944(n). [corrected by _Michel Marcus_, May 18 2020]
%F A048671 From _Henry Bottomley_, May 19 2000: (Start)
%F A048671 a(n) = n/A014963(n) = lcm(A052126(n), A032742(n)).
%F A048671 a(n) = n if n not a prime power, a(n) = n/p if n = p^m (i.e., a(n) = 1 if n = p). (End)
%F A048671 From _Vladeta Jovovic_, Jul 04 2002: (Start)
%F A048671 a(n) = n*Product_{d | n} d^mu(d).
%F A048671 Product_{d | n} a(d) = A007956(n). (End)
%F A048671 a(n) = Product_{k=1..n-1} if(gcd(n, k) > 1, 1 - exp(2*pi*i*k/n), 1), where i = sqrt(-1). - _Paul Barry_, Apr 15 2005
%F A048671 From _Peter Luschny_, Jun 09 2011: (Start)
%F A048671 a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*Pi/Gamma(k/n)^2, 1).
%F A048671 a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*sin(Pi*k/n), 1). (End)
%e A048671 8!/lcm(8) = 48 = 40320/840 while 7!/lcm(7) = 5040/420 = 12 so a(8) = 48/12 = 4.
%e A048671 a(5) = 1 = lcm(1,2,3,4,5)/lcm(1,5,10,10,5,1).
%p A048671 A048671 := n -> ilcm(op(numtheory[divisors](n) minus {1,n}));
%p A048671 seq(A048671(i), i=1..79); # _Peter Luschny_, Mar 21 2011
%t A048671 {1}~Join~Table[LCM @@ Most@ Divisors@ n, {n, 2, 79}] (* _Michael De Vlieger_, May 01 2016 *)
%o A048671 (PARI) a(n)=my(p=n);if(isprime(n)||(ispower(n,,&p)&&isprime(p)),n/p,n) \\ _Charles R Greathouse IV_, Jun 24 2011
%o A048671 (PARI) a(n)=my(p); if(isprimepower(n,&p), n/p, n) \\ _Charles R Greathouse IV_, May 02 2016
%o A048671 (Sage)
%o A048671 def A048671(n) :
%o A048671     if n < 2 : return 1
%o A048671     else : D = divisors(n); D.pop()
%o A048671     return lcm(D)
%o A048671 [A048671(i) for i in (1..79)] # _Peter Luschny_, Feb 03 2012
%Y A048671 Cf. A000142, A002944, A003418, A014963, A025527.
%Y A048671 Cf. A182936 gives the dual (greatest common divisor).
%K A048671 nonn,easy
%O A048671 1,4
%A A048671 _Labos Elemer_
%E A048671 New definition based on a comment of _David Wasserman_ by _Peter Luschny_, Mar 23 2011