This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048694 #30 Jun 13 2015 00:50:00 %S A048694 1,7,15,37,89,215,519,1253,3025,7303,17631,42565,102761,248087,598935, %T A048694 1445957,3490849,8427655,20346159,49119973,118586105,286292183, %U A048694 691170471,1668633125,4028436721,9725506567 %N A048694 Generalized Pellian with second term equal to 7. %C A048694 Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, ... . - _R. J. Mathar_, Aug 10 2012 %H A048694 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A048694 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1) %F A048694 a(n) = ((6+sqrt(2))(1+sqrt(2))^n - (6-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2). %F A048694 a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=7. %F A048694 G.f.: (1+5*x)/(1 - 2*x - x^2). - _Philippe Deléham_, Nov 03 2008 %F A048694 a(n) = ((1+sqrt(18))(1+sqrt(2))^n+(1-sqrt(18))(1-sqrt(2))^n)/2 offset 0. a(n) = first binomial transform of 1,6,2,12,4,24. - Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009 %p A048694 with(combinat): a:=n->5*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26); # _Zerinvary Lajos_, Apr 04 2008 %t A048694 a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{6},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 20 2010 *) %t A048694 LinearRecurrence[{2,1},{1,7},40] (* _Harvey P. Dale_, Jul 22 2011 *) %o A048694 (Maxima) %o A048694 a[0]:1$ %o A048694 a[1]:7$ %o A048694 a[n]:=2*a[n-1]+a[n-2]$ %o A048694 A048694(n):=a[n]$ %o A048694 makelist(A048694(n),n,0,30); /* _Martin Ettl_, Nov 03 2012 */ %Y A048694 Cf. A001333, A000129, A048654, A048655. %K A048694 easy,nonn %O A048694 0,2 %A A048694 _Barry E. Williams_