This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048711 #13 Jul 09 2025 03:53:03 %S A048711 7,27,119,427,1799,6939,30583,109227,458759,1769499,7798903,27984299, %T A048711 117901063,454761243,2004318071,7158278827,30064771079,115964117019, %U A048711 511101108343,1833951035819,7726646167303 %N A048711 2nd row of Family 1 "90 X 150 array": generations 0 .. n of Rule 90 starting from seed pattern 7. %C A048711 Also generated by applying one generation of "Rule 150" to each term of A038183 or by doing a transformation SHIFTXORADJ(A038183) %H A048711 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>: Maple implementation of binary eXclusive OR (XORnos). %F A048711 a(n) = product('((bit_i((n+1), i)*(2^(2^(i+1))))+1)', 'i'=0..floor_log_2(n+2)) + 2*product('((bit_i(n, i)*(2^(2^(i+1))))+1)', 'i'=0..floor_log_2(n+1)); %p A048711 # Maple procedure for doing Shift XOR adjacent terms transformation: %p A048711 SHIFTXORADJ := proc(a) local b,i: %p A048711 if whattype(a) <> list then RETURN([ ]); fi: if nops(a) <= 1 then RETURN([ ]); fi: b := [ ]: %p A048711 for i from 2 to nops(a) do b := [ op(b), XORnos((a[ i-1 ]*2),a[ i ]) ]: od: RETURN(b); end: %Y A048711 A048713. %K A048711 nonn %O A048711 0,1 %A A048711 _Antti Karttunen_