This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048715 #64 Jun 28 2024 23:06:47 %S A048715 0,1,2,4,8,9,16,17,18,32,33,34,36,64,65,66,68,72,73,128,129,130,132, %T A048715 136,137,144,145,146,256,257,258,260,264,265,272,273,274,288,289,290, %U A048715 292,512,513,514,516,520,521,528,529,530,544,545,546,548,576,577,578,580 %N A048715 Binary expansion matches (100(0)*)*(0|1|10)?; or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-3). %C A048715 No more than one 1-bit in each bit triple. %C A048715 All terms satisfy A048727(n) = 7*n. %C A048715 Constructed from A000930 in the same way as A003714 is constructed from A000045. %C A048715 It appears that n is in the sequence if and only if C(7n,n) is odd (cf. A003714). - _Benoit Cloitre_, Mar 09 2003 %C A048715 The conjecture by Benoit is correct. This is easily proved using the well-known result that the multiplicity with which a prime p divides C(n+m,n) is the number of carries when adding n+m in base p. - _Franklin T. Adams-Watters_, Oct 06 2009 %C A048715 Appears to be the set of numbers x such that (x AND 5*x) = x and (x OR 3*x)/x = 3. - _Gary Detlefs_, Jun 08 2024 %H A048715 G. C. Greubel, <a href="/A048715/b048715.txt">Table of n, a(n) for n = 0..1275</a> %H A048715 Sebastian Karlsson, <a href="/A048715/a048715.txt">Walnut code that verifies the conjectures of Paul D. Hanna</a> %H A048715 Walnut can be downloaded from <a href="https://cs.uwaterloo.ca/~shallit/walnut.html">https://cs.uwaterloo.ca/~shallit/walnut.html</a>. %H A048715 <a href="/index/Con#CongruCrossDomain">Index entries for sequences defined by congruent products between domains N and GF(2)[X]</a> %H A048715 <a href="/index/Con#CongruXOR">Index entries for sequences defined by congruent products under XOR</a> %H A048715 <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>. %F A048715 a(0) = 0, a(n) = (2^(invfoo(n)-1))+a(n-foo(invfoo(n))), where foo(n) is foo(n-1) + foo(n-3) (A000930) and invfoo is its "integral" (floored down) inverse. %F A048715 a(n) XOR 6*a(n) = 7*a(n); 3*a(n) XOR 4*a(n) = 7*a(n); 3*a(n) XOR 5*a(n) = 6*a(n); (conjectures). - _Paul D. Hanna_, Jan 22 2006 %F A048715 The conjectures can be verified using the Walnut theorem-prover (see links). - _Sebastian Karlsson_, Dec 31 2022 %t A048715 Reap[Do[If[OddQ[Binomial[7n, n]], Sow[n]], {n, 0, 400}]][[2, 1]] %t A048715 (* Second program: *) %t A048715 filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, !MatchQ[bb, {___, 1, 0, 1, ___}|{___, 1, 1, ___}]]; %t A048715 Select[Range[0, 580], filterQ] (* _Jean-François Alcover_, Dec 31 2020 *) %o A048715 (PARI) is(n)=!bitand(n, 6*n) \\ _Charles R Greathouse IV_, Oct 03 2016 %o A048715 (Perl) for my $k (0..580) { print "$k, " if sprintf("%b", $k) =~ m{^(100(0)*)*(0|1|10)?$}; } # _Georg Fischer_, Jun 26 2021 %o A048715 (Python) %o A048715 import re %o A048715 def ok(n): return re.fullmatch('(100(0)*)*(0|1|10)?', bin(n)[2:]) != None %o A048715 print(list(filter(ok, range(581)))) # _Michael S. Branicky_, Jun 26 2021 %Y A048715 Subsequence of A048716. %Y A048715 Cf. A003726, A004742, A004743, A004744, A048717, A048718, A048719, A048730, A048733, A115422, A115423, A115424. %K A048715 nonn,base,easy %O A048715 0,3 %A A048715 _Antti Karttunen_, Mar 30 1999 %E A048715 Definition corrected by _Georg Fischer_, Jun 26 2021