This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048735 #28 Aug 01 2017 06:21:29 %S A048735 0,0,0,1,0,0,2,3,0,0,0,1,4,4,6,7,0,0,0,1,0,0,2,3,8,8,8,9,12,12,14,15, %T A048735 0,0,0,1,0,0,2,3,0,0,0,1,4,4,6,7,16,16,16,17,16,16,18,19,24,24,24,25, %U A048735 28,28,30,31,0,0,0,1,0,0,2,3,0,0,0,1,4,4,6,7,0 %N A048735 a(n) = (n AND floor(n/2)), where AND is bitwise and-operator (A004198). %C A048735 To prove that (n AND floor(n/2)) = (3n-(n XOR 2n))/4 (= A048728(n)/4), we first multiply both sides by 4, to get 2*(n AND 2n) = (3n - (n XOR 2n)) and then rearrange terms: 3n = (n XOR 2n) + 2*(n AND 2n), which fits perfectly to the identity A+B = (A XOR B) + 2*(A AND B) (given by Schroeppel in HAKMEM link). %C A048735 The number of 1's through 4*2^n appears to yield A000045(n+1). - _Ben Burns_, Jun 12 2017 %H A048735 T. D. Noe, <a href="/A048735/b048735.txt">Table of n, a(n) for n = 0..1023</a> %H A048735 Beeler, M., Gosper, R. W. and Schroeppel, R., <a href="http://www.inwap.com/pdp10/hbaker/hakmem/boolean.html#item23">HAKMEM, ITEM 23 (Schroeppel)</a> %F A048735 a(n) = A048728(n)/4. (This was the original definition. AND-formula found Jan 01 2007). %p A048735 seq(Bits:-And(n,floor(n/2)), n=0..200); # _Robert Israel_, Feb 29 2016 %t A048735 Table[BitAnd[n, Floor[n/2]], {n, 0, 127}] (* _T. D. Noe_, Aug 13 2012 *) %o A048735 (PARI) a(n) = bitand(n, n\2); \\ _Michel Marcus_, Feb 29 2016 %o A048735 (Python) %o A048735 def a(n): return n&int(n/2) # _Indranil Ghosh_, Jun 13 2017 %Y A048735 Cf. A003714 (positions of zeros), A003188, A050600. %K A048735 nonn,base %O A048735 0,7 %A A048735 _Antti Karttunen_, Apr 26 1999 %E A048735 New formula and more terms added by _Antti Karttunen_, Jan 01 2007