This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048764 #46 Aug 22 2025 07:38:40 %S A048764 1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24,24,24,24, %T A048764 24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24, %U A048764 24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24 %N A048764 Largest factorial <= n. %D A048764 J. Castillo, Other Smarandache Type Functions: Inferior/Superior Smarandache f-part of x, Smarandache Notions Journal, Vol. 10, No. 1-2-3 (1999), 202-204. %H A048764 Charles R Greathouse IV, <a href="/A048764/b048764.txt">Table of n, a(n) for n = 1..10000</a> %H A048764 Krassimir T. Atanassov, <a href="http://www.gallup.unm.edu/~smarandache/Atanassov-SomeProblems.pdf">On Some of Smarandache's Problems</a>. %H A048764 Vassia K. Atanassova and Krassimir T. Atanassov, <a href="https://nntdm.net/volume-05-1999/number-2/86-88/">On the 43rd and 44th Smarandache Problems</a>, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5, No. 2, (1999), 86-88. %H A048764 Li Jie, <a href="https://citeseerx.ist.psu.edu/pdf/134f67dafd17bab61928c5a02e2e9808a27a1dad">On the inferior and superior factorial part sequences</a>, in Zhang Wenpeng (ed.), Research on Smarandache Problems in Number Theory (collected papers), 2004, pp. 47-48. %H A048764 Florentin Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>. %F A048764 n log log n / log n << a(n) <= n. - _Charles R Greathouse IV_, Sep 19 2012 %F A048764 From _Amiram Eldar_, Aug 02 2022: (Start) %F A048764 Sum_{n>=1} 1/a(n)^m = Sum_{k>=1} k/k!^m (Li Jie, 2004). %F A048764 In particular: %F A048764 Sum_{n>=1} 1/a(n)^2 = e (A001113). %F A048764 Sum_{n>=1} 1/a(n)^3 = BesselI(1,2) (A096789). (End) %F A048764 a(n) = A000142(A084558(n)). - _Ridouane Oudra_, Aug 22 2025 %t A048764 Table[k = 1; While[(k + 1)! <= n, k++]; k!, {n, 80}] (* _Michael De Vlieger_, Aug 30 2016 *) %o A048764 (PARI) a(n)=my(t=1,k=1);while(t<=n,t*=k++);t/k \\ _Charles R Greathouse IV_, Sep 19 2012 %o A048764 (Python) %o A048764 from sympy import factorial as f %o A048764 def a(n): %o A048764 k=1 %o A048764 while f(k + 1)<=n: k+=1 %o A048764 return f(k) %o A048764 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jun 21 2017, after Mathematica code %Y A048764 Cf. A000142, A001113, A096789, A084558. %K A048764 nonn,easy %O A048764 1,2 %A A048764 Charles T. Le (charlestle(AT)yahoo.com)