cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048775 Number of (partially defined) monotone maps from intervals of 1..n to 1..n.

This page as a plain text file.
%I A048775 #52 Feb 21 2022 01:19:14
%S A048775 1,7,31,121,456,1709,6427,24301,92368,352705,1352066,5200287,20058286,
%T A048775 77558745,300540179,1166803093,4537567632,17672631881,68923264390,
%U A048775 269128937199,1052049481838,4116715363777,16123801841526,63205303218851,247959266474026,973469712824029
%N A048775 Number of (partially defined) monotone maps from intervals of 1..n to 1..n.
%C A048775 More precisely, number of ways to pick a subinterval [i,i+1,...,j] of [1..n] and to map it to a nondecreasing sequence of the same length with symbols from [1..n]. If s is the length of the subinterval (1 <= s <= n), there are n+1-s ways to choose the subinterval and binomial(n+s-1,s) ways to choose the sequence, for a total of Sum_{s=1..n} (n+1-s)*binomial(n+s-1,s) = binomial(2*n+1, n+1)-(n+1) ways. - _N. J. A. Sloane_, Feb 02 2009
%C A048775 Arises in the classification of endomorphisms of certain finite-dimensional operator algebras.
%C A048775 Equals binomial transform of A163765 (using a different offset). - _Gary W. Adamson_, Aug 03 2009
%C A048775 From _David Spivak_, Dec 12 2012: (Start)
%C A048775 Number of morphisms of full subcategories of Simplex category.
%C A048775 A finite nonempty linear order of size m is isomorphic to [m]:={0,1,...,m}. The weakly monotone maps [k]->[m] form a category, often called the simplex category and denoted Delta. For m starting at -1, let D_m denote the full subcategory of Delta, spanned by objects {[0],[1],...,[m]}. The number of morphisms in D_m is a(n+1).
%C A048775 (End)
%C A048775 This sequence is the bisection of the 1st column of the triangle defined by T(n,k) = 1 if n=0 else T(n,k) = binomial(n-1,k2-1)-binomial(k2,k-1) where k2 = binomial(n,k) mod n. - _Nikita Sadkov_, Oct 08 2018
%H A048775 Harvey P. Dale, <a href="/A048775/b048775.txt">Table of n, a(n) for n = 1..1000</a>
%H A048775 David Applegate and N. J. A. Sloane, <a href="http://arxiv.org/abs/0907.0513">The Gift Exchange Problem</a>, arXiv:0907.0513 [math.CO], 2009.
%H A048775 Wikipedia, <a href="http://en.wikipedia.org/wiki/Simplex_category">Simplex category</a>
%F A048775 a(n) = binomial(2*n+1, n+1)-(n+1) = A001700(n)-n-1.
%F A048775 a(n) = (1/2)*Sum[Sum[(i+j)!/(i!*j!),{i,1,n}],{j,1,n}]. - _Alexander Adamchuk_, Jul 04 2006; corrected by _N. J. A. Sloane_, Jan 30 2009
%F A048775 G.f.: (1/(2*x))*(1/sqrt(1-4*x)-1) - 1/(1-x)^2. - _N. J. A. Sloane_, Feb 02 2009
%F A048775 a(n) = Sum_{k=0..n} (n-k+1)*C(n+k+1,n) = [x^n](1+x)^n*F(-n-2,-n-1;1;x/(1+x)). - _Paul Barry_, Oct 01 2010
%F A048775 Conjecture: (n+1)*a(n) + (-7*n-2)*a(n-1) + 3*(5*n-3)*a(n-2) + (-13*n+20)*a(n-3) + 2*(2*n-5)*a(n-4) = 0. - _R. J. Mathar_, Nov 30 2012
%F A048775 a(n) = (1/2) * Sum_{k=1..n} Sum_{i=1..n} C(k+i,i). - _Wesley Ivan Hurt_, Sep 19 2017
%F A048775 E.g.f.: exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - exp(x)*(1 + x). - _Ilya Gutkovskiy_, Sep 19 2017
%e A048775 a(2) = 7 because there are two maps with domain {1}, two with domain {2} and three maps with domain {1,2}.
%e A048775 When n=2, we are looking at the full subcategory of Delta spanned by [0],[1]. There is one monotone map [0]->[0], one monotone map [1]->[0], two monotone maps [0]->[1], and three monotone maps [1]->[1] (namely (0,0), (0,1), (1,1)). The total is 1+1+2+3=7. - _David Spivak_, Dec 12 2013
%p A048775 seq(coeff(series(factorial(n)*(exp(2*x)*(BesselI(0,2*x)+BesselI(1,2*x))-exp(x)*(1+x)),x,n+1), x, n), n = 1 .. 26); # _Muniru A Asiru_, Oct 09 2018
%t A048775 Table[Binomial[2n+1,n+1]-(n+1),{n,30}] (* _Harvey P. Dale_, Feb 08 2013 *)
%t A048775 From _Stefano Spezia_, Oct 09 2018: (Start)
%t A048775 a[n_]:=(1/2)*Sum[Sum[(i+j) !/(i !*j !),{i,1,n}],{j,1,n}]; Array[a, 50] (* or *)
%t A048775 CoefficientList[Series[((1/(2*x))*(1/Sqrt[1-4*x]-1) - 1/(1-x)^2)/x, {x, 0, 50}], x] (* or *)
%t A048775 CoefficientList[Series[(Exp[2*x]*(BesselI[0,2*x] + BesselI[1,2*x]) - Exp[x]*(1 + x))/x, {x, 0, 50}], x]*Table[(k+1) !, {k, 0, 50}]
%t A048775 (End)
%o A048775 (PARI) Vec((1/(2*x))*(1/sqrt(1-4*x)-1) - 1/(1-x)^2 + O(x^15)) \\ _Stefano Spezia_, Oct 09 2018
%o A048775 (GAP) List([1..26],n->Binomial(2*n+1,n+1)-(n+1)); # _Muniru A Asiru_, Oct 09 2018
%o A048775 (Magma) [Binomial(2*n+1, n+1)-(n+1): n in [1..30]]; // _Vincenzo Librandi_, Oct 10 2018
%Y A048775 Cf. A001700, A144657, A305161.
%K A048775 easy,nonn,nice
%O A048775 1,2
%A A048775 Stephen C. Power (s.power(AT)lancaster.ac.uk)
%E A048775 More terms from _N. J. A. Sloane_, Dec 15 2008