cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048833 Number of starting positions of Nim with 2n pieces such that 2nd player wins. Partitions of 2n such that xor-sum of partitions is 0.

This page as a plain text file.
%I A048833 #35 May 14 2024 11:40:06
%S A048833 1,1,2,4,6,10,16,31,43,68,98,153,213,317,443,704,971,1415,1975,2818,
%T A048833 3865,5401,7366,10142,13639,18438,24583,32861,43345,57268,75175,99119,
%U A048833 129278,168796,219614,284887,368546,475919,614379,788845,1012117,1293980,1654090
%N A048833 Number of starting positions of Nim with 2n pieces such that 2nd player wins. Partitions of 2n such that xor-sum of partitions is 0.
%C A048833 Number of different prime signatures of the 2n-almost primes in A268390. - _Peter Munn_, Dec 02 2021
%H A048833 Alois P. Heinz, <a href="/A048833/b048833.txt">Table of n, a(n) for n = 0..750</a>
%H A048833 C. L. Bouton, <a href="http://www.jstor.org/stable/1967631">Nim, a game with a complete mathematical theory</a>, Annals of Mathematics, Second Series, vol. 3 (1/4), 1902, 35-39.
%H A048833 R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, <a href="https://hal.archives-ouvertes.fr/hal-00985731">The Game of timber!</a>,  hal-00985731, 2013.
%F A048833 a(n) = A050314(2n, 0): column 0 of triangle.
%e A048833 For n=4 the 6 partitions of 8 are [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2], [2, 2, 2, 2], [1, 1, 1, 2, 3], [1, 1, 3, 3] and [4, 4].
%p A048833 read("transforms") : # defines XORnos
%p A048833 A048833 := proc(n)
%p A048833     local p, xrs,i,a ;
%p A048833     if n = 0 then
%p A048833         return 1 ;
%p A048833     end if;
%p A048833     a := 0 ;
%p A048833     for p in combinat[partition](2*n) do
%p A048833         xrs := op(1,p) ;
%p A048833         for i from 2 to nops(p) do
%p A048833             xrs := XORnos(xrs,op(i,p)) ;
%p A048833         end do:
%p A048833         if xrs = 0 then
%p A048833             a := a+1 ;
%p A048833         end if;
%p A048833     end do:
%p A048833     a ;
%p A048833 end proc: # _R. J. Mathar_, Apr 29 2022
%t A048833 b[n_, i_, k_] := b[n, i, k] = If[n == 0, x^k, If[i < 1, 0, Sum[b[n-i*j, i-1, If[EvenQ[j], k, BitXor[i, k]]], {j, 0, n/i}]]];
%t A048833 a[n_] := Coefficient[b[2n, 2n, 0], x, 0];
%t A048833 Table[a[n], {n, 0, 42}] (* _Jean-François Alcover_, Mar 25 2024, after _Alois P. Heinz_ in A050314 *)
%Y A048833 Cf. A050314.
%Y A048833 Cf. A003987, A268390.
%K A048833 nonn
%O A048833 0,3
%A A048833 _Christian G. Bower_, Jun 15 1999