This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048852 #20 Feb 22 2024 20:22:04 %S A048852 0,3,10,14,44,26,68,38,92,174,62,222,164,86,188,318,354,122,402,284, %T A048852 146,474,332,534,776,404,206,428,218,452,1778,524,822,278,1490,302, %U A048852 942,978,668,1038,1074,362,1910,386,788,398,2532,2676,908,458,932,1434,482 %N A048852 Difference between b^2 (in c^2=a^2+b^2) and product of successive prime pairs. %H A048852 G. C. Greubel, <a href="/A048852/b048852.txt">Table of n, a(n) for n = 0..10000</a> %F A048852 Find b^2 in Pythagorean formula c^2=a^2+b^2. Subtract product of successive prime pair at same a(n) beginning at 2*2. %F A048852 For n>0, a(n) = A000040(n+1)^2 - A000040(n) * A000040(n+1). - _Mamuka Jibladze_, Mar 24 2017 %e A048852 a(3)=10. Product of 3rd prime pair 3*5=15 (after 2*2=4 and 2*3=6). b^2=25 (in c^2=a^2+b^2) where c^2=34 and a^2=9. Then 25-15=10. %t A048852 With[{P=Prime}, Table[If[n==0, 0, P[n+1]*(P[n+1]-P[n])], {n,0,60}]] (* _G. C. Greubel_, Feb 22 2024 *) %o A048852 (Magma) [0] cat [NthPrime(n+1)*(NthPrime(n+1)-NthPrime(n)): n in [1..60]]; // _G. C. Greubel_, Feb 22 2024 %o A048852 (SageMath) p=nth_prime; [0]+[p(n+1)*(p(n+1)-p(n)) for n in range(1,61)] # _G. C. Greubel_, Feb 22 2024 %Y A048852 Cf. A000040, A048851, A006094, A291463. %K A048852 easy,nonn %O A048852 0,2 %A A048852 _Enoch Haga_