cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048853 Number of primes (different from n) that can be produced by altering one digit of decimal expansion of n (without changing the number of digits).

This page as a plain text file.
%I A048853 #26 Jul 31 2022 15:57:07
%S A048853 4,3,3,4,3,4,3,4,4,4,7,4,8,4,4,4,7,4,7,2,7,2,6,2,2,2,7,2,5,2,5,2,8,2,
%T A048853 2,2,5,2,7,3,6,3,7,3,3,3,6,3,8,2,7,2,6,2,2,2,7,2,5,2,5,2,8,2,2,2,5,2,
%U A048853 7,3,6,3,7,3,3,3,8,3,6,2,7,2,6,2,2,2,7,2,5,1,6,1,7,1,1,1,4,1,6,4,10,4,8,4,4
%N A048853 Number of primes (different from n) that can be produced by altering one digit of decimal expansion of n (without changing the number of digits).
%C A048853 a(A192545(n)) = 0. - _Reinhard Zumkeller_, Jul 05 2011
%H A048853 Reinhard Zumkeller, <a href="/A048853/b048853.txt">Table of n, a(n) for n = 1..10000</a>
%e A048853 Altering the number 13 gives eight primes: 11, 17, 19, 23, 43, 53, 73, 83, so a(13)=8.
%p A048853 A048853 := proc(n::integer) local resul,ddigs,d,c,tmp ; resul := 0 ; ddigs := convert(n,base,10) ; for d from 1 to nops(ddigs) do for c from 0 to 9 do if c = 0 and d = nops(ddigs) then continue ; else if c <> op(d,ddigs) then tmp := [op(1..d-1,ddigs),c,op(d+1..nops(ddigs),ddigs)] ; tst := sum(op(i,tmp)*10^(i-1),i=1..nops(tmp)) ; if isprime(tst) then resul := resul+1 ; fi ; fi ; fi ; od : od ; RETURN(resul) ; end: for n from 1 to 90 do printf("%d,",A048853(n)) ; od ; # _R. J. Mathar_, Apr 25 2006
%t A048853 a[n_] := Module[{idn = IntegerDigits[n], id, np = 0}, Do[id = idn; If[ id[[j]] != k, id[[j]] = k; If[ id[[1]] != 0 && PrimeQ[ FromDigits[id]], np = np + 1]], {j, 1, Length[idn]}, {k, 0, 9}]; np]; Table[a[n], {n, 1, 105}] (* _Jean-François Alcover_, Dec 01 2011 *)
%o A048853 (Haskell)
%o A048853 import Data.List (inits, tails, nub)
%o A048853 a048853 n = (sum $ map (a010051 . read) $ tail $ nub $ concat $ zipWith
%o A048853   (\its tls -> map ((\xs ys d -> xs ++ (d:ys)) its tls) "0123456789")
%o A048853     (map init $ tail $ inits $ show n) (tail $ tails $ show n)) - a010051 n
%o A048853 -- _Reinhard Zumkeller_, Jul 05 2011
%o A048853 (Python)
%o A048853 from sympy import isprime
%o A048853 def h1(n): # hamming distance 1 neighbors of n, not starting with 0
%o A048853     s = str(n); d = "0123456789"; L = len(s)
%o A048853     yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L) if c!=s[i] and not (i==0 and c=="0"))
%o A048853 def a(n): return sum(1 for k in h1(n) if isprime(k))
%o A048853 print([a(n) for n in range(1, 106)]) # _Michael S. Branicky_, Jul 31 2022
%Y A048853 Cf. A050652-A050673.
%Y A048853 Cf. A010051, A158124.
%K A048853 base,nonn,easy,nice
%O A048853 1,1
%A A048853 _G. L. Honaker, Jr._ and _Patrick De Geest_