cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048855 Number of integers up to n! relatively prime to n!.

This page as a plain text file.
%I A048855 #60 Aug 11 2025 10:49:41
%S A048855 1,1,1,2,8,32,192,1152,9216,82944,829440,8294400,99532800,1194393600,
%T A048855 16721510400,250822656000,4013162496000,64210599936000,
%U A048855 1155790798848000,20804234379264000,416084687585280000,8737778439290880000,192231125664399360000
%N A048855 Number of integers up to n! relatively prime to n!.
%C A048855 Rephrasing the Quet formula: Begin with 1. Then, if n + 1 is prime subtract 1 and multiply. If n+1 is not prime, multiply. Continue writing each product. Thus the sequence would begin 1, 2, 8, . . . . The first product is 1*(2 - 1), second is 1*(3 - 1), and third is 2*4. - _Enoch Haga_, May 06 2009
%D A048855 Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, page 134.
%H A048855 Charles R Greathouse IV, <a href="/A048855/b048855.txt">Table of n, a(n) for n = 0..450</a>
%H A048855 Jean-Marie De Koninck and William Verreault, <a href="https://doi.org/10.2298/PIM2429045D">Arithmetic functions at factorial arguments</a>, Publications de l'Institut Mathématique, Vol. 115, No. 129 (2024), pp. 45-76.
%F A048855 a(n) = phi(n!) = A000010(n!).
%F A048855 If n is composite, then a(n) = a(n-1)*n. If n is prime, then a(n) = a(n-1)*(n-1). - _Leroy Quet_, May 24 2007
%F A048855 Under the Riemann Hypothesis, a(n) = n! / (e^gamma * log n) * (1 + O(log n/sqrt(n))). - _Charles R Greathouse IV_, May 12 2011
%F A048855 Sum_{k=1..n} a(k) = exp(-gamma) * (n!/log(n)) * (1 + O(1/log(n)^3)), where gamma is Euler's constant (A001620) (De Koninck and Verreault, 2024, p. 56, eq. (4.12)). - _Amiram Eldar_, Dec 10 2024
%p A048855 with(numtheory):a:=n->phi(n!): seq(a(n), n=0..20); # _Zerinvary Lajos_, Oct 07 2007
%t A048855 Table[ EulerPhi[ n! ], {n, 0, 21}] (* _Robert G. Wilson v_, Nov 21 2003 *)
%o A048855 (Sage) [euler_phi(factorial(n)) for n in range(0,21)] # _Zerinvary Lajos_, Jun 06 2009
%o A048855 (PARI) a(n)=eulerphi(n!) \\ _Charles R Greathouse IV_, May 12 2011
%o A048855 (Python)
%o A048855 from math import factorial, prod
%o A048855 from sympy import primerange
%o A048855 from fractions import Fraction
%o A048855 def A048855(n): return (factorial(n)*prod(Fraction(p-1,p) for p in primerange(n+1))).numerator # _Chai Wah Wu_, Jul 06 2022
%Y A048855 Cf. A000010, A000142, A014197.
%Y A048855 Cf. A001620, A080130.
%K A048855 easy,nonn
%O A048855 0,4
%A A048855 _Paul Max Payton_
%E A048855 Name changed by _Daniel Forgues_, Aug 01 2011