cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048864 Number of nonprime numbers (composites and 1) in the reduced residue system of n.

This page as a plain text file.
%I A048864 #34 Feb 25 2020 08:05:56
%S A048864 1,1,1,1,2,1,3,1,3,2,6,1,7,2,4,3,10,1,11,2,6,4,14,1,12,5,10,5,19,1,20,
%T A048864 6,11,7,15,3,25,8,14,6,28,2,29,8,12,10,32,3,28,7,19,11,37,4,26,10,22,
%U A048864 14,42,2,43,14,20,15,32,5,48,15,27,8,51,6,52,17,21,17,41,6,57,12,33,20
%N A048864 Number of nonprime numbers (composites and 1) in the reduced residue system of n.
%C A048864 Differs from A039776 at n = 20, 21, ...
%H A048864 Michael De Vlieger, <a href="/A048864/b048864.txt">Table of n, a(n) for n = 1..10000</a>
%H A048864 Abhijit A J, A. Satyanarayana Reddy, <a href="https://arxiv.org/abs/1907.09908">Number of non-primes in the set of units modulo n</a>, arXiv:1907.09908 [math.GM], 2019.
%H A048864 Abhijit A. J. and A. Satyanarayana Reddy, <a href="http://www.indianmathsociety.org.in/mathstudent-part-1-2019.pdf#page=153">Number of non-primes in the set of units modulo n</a>, The Mathematics Student, Vol. 88, No. 1-2 (2019), 147-152.
%F A048864 a(n) = A036997(n) + 1. - _Peter Luschny_, Oct 22 2010
%F A048864 a(n) = A000010(n) - (A000720(n) - A001221(n)).
%e A048864 At n = 10, we see that the numbers below 10 coprime to 10 are 1, 3, 7, 9. Removing 3 and 7, which are prime, we are left with two numbers, 1 and 9. Hence a(10) = 2.
%e A048864 At n = 100, phi(100) = 40, phi(100) - (pi(100) - A001221(100)) = 17, thus a(100) = 17.
%p A048864 A048864 := n -> nops(select(k->gcd(k,n)=1,remove(isprime,[$1..n]))); # _Peter Luschny_, Oct 22 2010
%t A048864 Array[EulerPhi@ # - (PrimePi@ # - PrimeNu@ #) &, 82] (* _Michael De Vlieger_, Jul 03 2016 *)
%t A048864 Table[Length[Select[Range[n], GCD[n, #] == 1 && Not[PrimeQ[#]] &]], {n, 80}] (* _Alonso del Arte_, Oct 02 2017 *)
%o A048864 (PARI) a(n) = eulerphi(n) - (primepi(n) - omega(n)); \\ _Indranil Ghosh_, Apr 27 2017
%o A048864 (Python)
%o A048864 from sympy import totient, primepi, primefactors
%o A048864 def a(n): return totient(n) - (primepi(n) - len(primefactors(n))) # _Indranil Ghosh_, Apr 27 2017
%Y A048864 Cf. A039776, A000010, A000720, A001221, A037228, A072022, A072023, A074915.
%K A048864 nonn
%O A048864 1,5
%A A048864 _Labos Elemer_
%E A048864 Converted second formula to an equation, added commas to the example - _R. J. Mathar_, Oct 23 2010