cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048870 Triangle of coefficients of certain Sheffer-polynomials.

Original entry on oeis.org

1, 1, 1, 4, 10, 1, 30, 132, 27, 1, 336, 2232, 696, 52, 1, 5040, 46320, 19500, 2200, 85, 1, 95040, 1141920, 606960, 91800, 5340, 126, 1, 2162160, 32639040, 20991600, 3986640, 310170, 11004, 175, 1, 57657600, 1061746560, 802287360, 183550080
Offset: 0

Views

Author

Keywords

Comments

s(n,x) := sum(a(n,m)*x^m,m=0..n) are monic polynomials satisfying s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials p(n,x)=sum(A048786(n,m)*x^m, m=1..n) (row polynomials of triangle A048786) and p(0,x)=1. In the umbral calculus (see reference) the s(n,x) are called Sheffer polynomials for(c(t/(1+4*t)),t/(1+4*t)), where c(x) = g.f. for Catalan numbers A000108. a(n,0) = A001761(n-2) = n!*A000108(n).

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

Crossrefs

Formula

a(n, m) = (n!/m!)*A046527(n, m) = (n!/m!)*binomial(n, m-1)*(4^(n-m+1)-binomial(2*n, n)/binomial(2*(m-1), m-1))/2, n >= m >= 0, a(n, m) := 0, n