This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048889 #21 Dec 26 2022 15:08:52 %S A048889 68,116,118,161,166,169,188,608,616,1006,1018,1066,1081,1096,1106, %T A048889 1108,1118,1169,1186,1606,1618,1808,1816,1898,1916,1918,1969,1981, %U A048889 1988,1996,6001,6008,6016,6098,6188,6191,6196,6616,6668,6698,6808,6809,6881,6896 %N A048889 Composite numbers not ending in zero that yield a prime when turned upside down. %H A048889 Robert Israel and Reinhard Zumkeller, <a href="/A048889/b048889.txt">Table of n, a(n) for n = 1..10000</a> (a(1) to a(1048) from Reinhard Zumkeller) %e A048889 68 is not prime, yet when turned upside down gives 89 which is prime. %p A048889 N:= 1000: # to get a(1) to a(N) %p A048889 count:= 0: %p A048889 for q from 1 while count < N do %p A048889 if q mod 5 <> 0 then %p A048889 L:= convert(q,base,5); %p A048889 m:= nops(L); %p A048889 Lx:= subs(2=6,3=8,4=9,L); %p A048889 x:= add(Lx[i]*10^(i-1),i=1..m); %p A048889 if isprime(x) then next fi; %p A048889 Ly:= subs(2=9,3=8,4=6,L); %p A048889 y:= add(Ly[-i]*10^(i-1),i=1..m); %p A048889 if isprime(y) then %p A048889 count:= count+1; %p A048889 A[count]:= x; %p A048889 fi %p A048889 fi %p A048889 od: %p A048889 seq(A[i],i=1..count); # _Robert Israel_, Jul 11 2016 %t A048889 Select[Range[7000],CompositeQ[#]&&Mod[#,10]!=0&&SubsetQ[{0,1,6,8,9}, IntegerDigits[ #]]&&PrimeQ[FromDigits[Reverse[IntegerDigits[#]]/.{6->9,9->6}]]&] (* _Harvey P. Dale_, Dec 26 2022 *) %o A048889 (Haskell) %o A048889 import Data.List (intersect) %o A048889 import Numeric (readInt) %o A048889 import Data.Char (digitToInt) %o A048889 a048889 n = a048889_list !! (n-1) %o A048889 a048889_list = filter f a002808_list where %o A048889 f n = n `mod` 10 > 0 && %o A048889 null ("23547" `intersect` show n) && %o A048889 (a010051 (fst $ head $ readInt 10 (const True) ud $ ns) == 1) %o A048889 where ns = reverse $ show n %o A048889 ud '6' = 9 %o A048889 ud '9' = 6 %o A048889 ud z = digitToInt z %o A048889 -- _Reinhard Zumkeller_, Aug 11 2011 %o A048889 (Python) %o A048889 from itertools import product %o A048889 from sympy import isprime %o A048889 A048889_list = [m for m in (int(''.join(d)) for d in product('01689',repeat=6)) if m % 10 and not isprime(m) and isprime(int(str(m)[::-1].translate(''.maketrans('69','96'))))] # _Chai Wah Wu_, Sep 14 2021 %Y A048889 Cf. A002808, A010051. %K A048889 base,easy,nonn,nice %O A048889 1,1 %A A048889 _G. L. Honaker, Jr._