This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048908 #26 Feb 16 2025 08:32:40 %S A048908 1,25,406,6478,103249,1645513,26224966,417953950,6661038241, %T A048908 106158657913,1691877488374,26963881156078,429730221008881, %U A048908 6848719654986025,109149784258767526,1739547828485294398,27723615471505942849,441838299715609791193,7041689179978250716246 %N A048908 Indices of triangular numbers which are also 9-gonal. %C A048908 lim( n -> Infinity , a(n)/a(n-1)) = 8 + 3*sqrt(7). - _Ant King_, Nov 03 2011 %H A048908 Colin Barker, <a href="/A048908/b048908.txt">Table of n, a(n) for n = 1..832</a> %H A048908 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NonagonalTriangularNumber.html">Nonagonal Triangular Number.</a> %H A048908 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-17,1). %F A048908 a(n+2) = 16*a(n+1)-a(n)+7, a(n+1) = 8*a(n)+3.5+1.5*(28*a(n)^2+28*a(n)+25)^0.5 - _Richard Choulet_, Sep 22 2007 %F A048908 G.f.: f(z) = a(1)*z+a(2)*z^2+... = (z+8z^2-2*z^3)/((1-z)*(1-16*z+z^2)) - _Richard Choulet_, Oct 09 2007 %F A048908 From _Ant King_, Nov 03 2011: (Start) %F A048908 a(n) = 17*a(n-1) - 17*a(n-2) + a(n-3). %F A048908 a(n) = floor(3/28*sqrt(7)*(3 - sqrt(7))*(8 + 3* sqrt(7))^n). %F A048908 (End) %t A048908 LinearRecurrence[{17, -17, 1}, {1, 25, 406}, 16]; (* _Ant King_, Nov 03 2011 *) %o A048908 (PARI) Vec(x*(2*x^2-8*x-1)/((x-1)*(x^2-16*x+1)) + O(x^50)) \\ _Colin Barker_, Jun 22 2015 %Y A048908 Cf. A048907, A048909. %K A048908 nonn,easy %O A048908 1,2 %A A048908 _Eric W. Weisstein_