This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048911 #18 Feb 16 2025 08:32:40 %S A048911 1,3,33,91,989,2727,29637,81719,888121,2448843,26613993,73383571, %T A048911 797531669,2199058287,23899336077,65898365039,716182550641, %U A048911 1974751892883,21461577183153,59176658421451,643131132943949,1773325000750647,19272472411135317,53140573364097959 %N A048911 Indices of square numbers which are also 9-gonal. %C A048911 From _Ant King_, Nov 18 2011: (Start) %C A048911 lim( n -> Infinity, a(2n+1)/a(2n)) = 1/25 * (137 + 36 * sqrt(14)). %C A048911 lim( n -> Infinity, a(2n)/a(2n-1)) = 1/25 * (39 + 8 * sqrt(14)). %C A048911 (End) %H A048911 Colin Barker, <a href="/A048911/b048911.txt">Table of n, a(n) for n = 1..1000</a> %H A048911 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NonagonalSquareNumber.html">Nonagonal Square Number.</a> %H A048911 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,30,0,-1) %F A048911 From _Ant King_, Nov 18 2011: (Start) %F A048911 a(n) = 30 * a(n-2) - a(n-4). %F A048911 G.f.: x * (1 + x) ^ 3 / (1 - 30 * x ^ 2 + x ^ 4). %F A048911 Let p = 8 * sqrt(7) + 9 * sqrt(14) - 7 * sqrt(2) - 28 and q = 7 * sqrt(2) + 9 * sqrt(14) - 8 * sqrt(7) - 28. Then %F A048911 a(n) = 1/112 * ( ( p + q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7)) ^ n - ( p - q * (-1) ^ n) * ( 2 * sqrt(2) - sqrt(7)) ^ ( n - 1) ). %F A048911 a(n) = floor ( 1/112 * ( p + q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7)) ^ n ). %F A048911 (End) %t A048911 LinearRecurrence[ {0, 30, 0, - 1 }, { 1, 3, 33, 91 } , 21 ] (* _Ant King_, Nov 18 2011 *) %o A048911 (PARI) Vec(x*(x+1)^3/(x^4-30*x^2+1) + O(x^50)) \\ _Colin Barker_, Jun 22 2015 %Y A048911 Cf. A048910, A036411. %K A048911 nonn,easy %O A048911 1,2 %A A048911 _Eric W. Weisstein_