cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048942 a(n) is twice the coefficient of the radical part in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 1).

This page as a plain text file.
%I A048942 #40 Feb 16 2025 08:32:40
%S A048942 2,2,1,4,6,1,2,6,1,1,8,2,2,8,78,1,1,84,10,2,2,10,3,1,4,546,1,8,12,2,2,
%T A048942 12,8,1,10,4,1062,3,1,7176,14,2,2,14,5,1,132,24,4,40,26,138,1,5,16,2,
%U A048942 2,16,11934,1,3,60,826,4,250,10,6,39,1,12,18,2,2,18
%N A048942 a(n) is twice the coefficient of the radical part in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 1).
%C A048942 From _Sean A. Irvine_, Jul 16 2021: (Start)
%C A048942 These values are computed by Algorithm 5.7.2 in Cohen.
%C A048942 Other methods of computation (see A346420) give different results, with the first difference at n=14.
%C A048942 (End)
%C A048942 a(n) is the smallest positive integer y satisfying the Pell equation x^2 - D*y^2 = +-4, where D = A000037(n). - _Jinyuan Wang_, Sep 08 2021
%D A048942 Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993.
%H A048942 Jinyuan Wang, <a href="/A048942/b048942.txt">Table of n, a(n) for n = 1..1000</a>
%H A048942 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Class number theory</a>
%H A048942 Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author]
%H A048942 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a048/A048942.java">Java program</a> (github)
%H A048942 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FundamentalUnit.html">Fundamental Unit</a>.
%o A048942 (PARI) a(n) = my(A, D=n+(1+sqrtint(4*n))\2, d=sqrtint(D), p, q, t, u1, u2, v1, v2); if(d%2==D%2, p=d, p=d-1); u1=-p; u2=2; v1=1; v2=0; q=2; while(v2==0 || q!=t, A=(p+d)\q; t=p; p=A*q-p; if(t==p && v2!=0, return(2*u2*v2/q), t=A*u2+u1; u1=u2; u2=t; t=A*v2+v1; v1=v2; v2=t; t=q; q=(D-p^2)/q)); (u1*v2+u2*v1)/q; \\ _Jinyuan Wang_, Sep 08 2021
%Y A048942 Cf. A000037, A007913, A048941, A346419, A346420.
%K A048942 nonn
%O A048942 1,1
%A A048942 _Eric W. Weisstein_
%E A048942 Name edited by _Michel Marcus_, Jun 26 2020
%E A048942 Entry revised by _Sean A. Irvine_, Jul 16 2021