This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048944 #27 Feb 16 2025 08:32:40 %S A048944 1,4,8,9,12,18,20,25,27,28,32,36,44,45,49,50,52,60,63,64,68,72,75,76, %T A048944 84,90,92,96,98,99,100,108,116,117,121,124,125,126,132,140,144,147, %U A048944 148,150,153,156,160,164,169,171,172,175,180,188,196,198,200,204,207 %N A048944 Numbers k such that the product of divisors of k is a cube. %C A048944 From _Robert Israel_, Jun 30 2014: (Start) %C A048944 n is in the sequence iff either %C A048944 1) for at least one prime p dividing n, the p-adic order of n is congruent to 2 mod 3, or %C A048944 2) for all primes p dividing n, the p-adic order of n is congruent to 0 mod 3 (and thus n is a cube). (End) %C A048944 The asymptotic density of this sequence is 1 - zeta(3)/zeta(2) = 0.2692370305... . - _Amiram Eldar_, Jul 01 2022 %H A048944 Robert Israel, <a href="/A048944/b048944.txt">Table of n, a(n) for n = 1..10000</a> %H A048944 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorProduct.html">Divisor Product</a>. %p A048944 filter:= proc(n) local F; %p A048944 F:= ifactors(n)[2]; %p A048944 F:= convert(map(t -> t[2] mod 3, F),set); %p A048944 has(F,2) or F = {0} or F = {}; %p A048944 end proc: %p A048944 select(filter, [$1..1000]); # _Robert Israel_, Jun 30 2014 %t A048944 Select[Range[250],IntegerQ[Surd[Times@@Divisors[#],3]]&] (* _Harvey P. Dale_, Feb 05 2019 *) %t A048944 q[n_] := AnyTrue[FactorInteger[n][[;; , 2]], Mod[#, 3] == 2 &]; m = 6; Union[Range[m]^3, Select[Range[m^3], q]] (* _Amiram Eldar_, Jul 01 2022 *) %o A048944 (PARI) is(n)=ispower(n,3) || #select(e->e%3==2, factor(n)[,2]) \\ _Charles R Greathouse IV_, Sep 18 2015 %Y A048944 Disjoint union of A000578 and A059269. %Y A048944 Cf. A007955. %K A048944 nonn %O A048944 1,2 %A A048944 _Eric W. Weisstein_