This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048950 #32 Feb 16 2025 08:32:40 %S A048950 121,703,1729,1891,2821,3281,7381,8401,8911,10585,12403,15457,15841, %T A048950 16531,18721,19345,23521,24661,28009,29341,31621,41041,44287,46657, %U A048950 47197,49141,50881,52633,55969,63139,63973,74593,75361,79003,82513 %N A048950 Base-3 Euler-Jacobi pseudoprimes. %C A048950 Odd composite k with gcd(k,3) = 1 and 3^((k-1)/2) == (3,k) (mod k) where (.,.) is the Jacobi symbol. - _R. J. Mathar_, Jul 15 2012 %C A048950 The base 5 Euler-Jacobi pseudoprimes are 781, 1541, 1729, 5461, 5611, 6601, 7449, ... - _R. J. Mathar_, Jul 15 2012 [Typo fixed; this is A375914. - _Jianing Song_, Sep 02 2024] %H A048950 Amiram Eldar, <a href="/A048950/b048950.txt">Table of n, a(n) for n = 1..10000</a> %H A048950 A. Rotkiewicz, <a href="https://doi.org/10.1090/S0025-5718-1982-0658229-0">On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with Parameters L, Q in arithmetic progressions</a>, Math. Comp 39 (159) (1982) 239-247. %H A048950 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Euler-JacobiPseudoprime.html">Euler-Jacobi Pseudoprime</a>. %H A048950 <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a> %t A048950 Select[Range[1, 10^5, 2], GCD[#, 3] == 1 && CompositeQ[#] && PowerMod[3, (# - 1)/2, #] == Mod[JacobiSymbol[3, #], #] &] (* _Amiram Eldar_, Jun 28 2019 *) %o A048950 (PARI) is(n) = n%2==1 && gcd(n,3)==1 && Mod(3, n)^((n-1)/2)==kronecker(3,n) %o A048950 forcomposite(c=1, 83000, if(is(c), print1(c, ", "))) \\ _Felix Fröhlich_, Jul 15 2019 %Y A048950 Cf. A005935. %Y A048950 | b=2 | b=3 | b=5 | %Y A048950 -----------------------------------+-------------------+----------+---------+ %Y A048950 (b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 | %Y A048950 -----------------------------------+-------------------+----------+---------+ %Y A048950 (b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 | %Y A048950 -----------------------------------+-------------------+----------+---------+ %Y A048950 b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 | %Y A048950 (b/k)=-1, b^((k-1)/2)==1 (mod k) | | | | %Y A048950 -----------------------------------+-------------------+----------+---------+ %Y A048950 Euler-Jacobi pseudoprimes | A047713 | this seq | A375914 | %Y A048950 (union of first two) | | | | %Y A048950 -----------------------------------+-------------------+----------+---------+ %Y A048950 Euler pseudoprimes | A006970 | A262051 | A262052 | %Y A048950 (union of all three) | | | | %K A048950 nonn %O A048950 1,1 %A A048950 _Eric W. Weisstein_