This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048986 #28 Nov 13 2024 13:25:56 %S A048986 1,2,3,31,5,11,7,179,29,31,11,43,13,23,29,12007,17,47,19,251,31,43,23, %T A048986 499,4091,4091,127,4091,29,127,31,1564237,59,4079,47,367,37,83,61,383, %U A048986 41,179,43,499,4091,4091,47,683,127,173,113,173,53,191,4091 %N A048986 Home primes in base 2: primes reached when you start with n and (working in base 2) concatenate its prime factors (A048985); repeat until a prime is reached (or -1 if no prime is ever reached). Answer is written in base 10. %C A048986 a(1) = 1 by convention. %C A048986 The first binary home prime that is not known is a(2295). - _Ely Golden_, Jan 09 2017 %H A048986 Ely Golden, <a href="/A048986/b048986.txt">Table of n, a(n) for n = 1..2294</a> %H A048986 Patrick De Geest, <a href="http://www.worldofnumbers.com/topic1.htm">Home Primes</a> %H A048986 Ely Golden, <a href="http://www.mersennewiki.org/index.php/Base_2_Home_Prime_Results">Mersenne Wiki Home Primes base 2</a> %H A048986 Ely Golden, <a href="/A048986/a048986_2.txt">Table of n, a(n) for n = 1..3000 (a-file)</a> %e A048986 4 = 2*2 -> 1010 = 10 = 2*5 ->10101 = 21 = 3*7 -> 11111 = 31 = prime. %t A048986 f[n_] := Module[{fi}, If[PrimeQ[n], n, fi = FactorInteger[n]; Table[ First[#], {Last[#]}]& /@ fi // Flatten // IntegerDigits[#, 2]& // Flatten // FromDigits[#, 2]&]]; a[1] = 1; a[n_] := TimeConstrained[FixedPoint[f, n], 1] /. $Aborted -> -1; Array[a, 55] (* _Jean-François Alcover_, Jan 01 2016 *) %o A048986 (SageMath) %o A048986 def digitLen(x,n): %o A048986 r=0 %o A048986 while(x>0): %o A048986 x//=n %o A048986 r+=1 %o A048986 return r %o A048986 def concatPf(x,n): %o A048986 r=0 %o A048986 f=list(factor(x)) %o A048986 for c in range(len(f)): %o A048986 for d in range(f[c][1]): %o A048986 r*=(n**digitLen(f[c][0],n)) %o A048986 r+=f[c][0] %o A048986 return r %o A048986 def hp(x,n): %o A048986 x1=concatPf(x,n) %o A048986 while(x1!=x): %o A048986 x=x1 %o A048986 x1=concatPf(x1,n) %o A048986 return x %o A048986 radix=2 %o A048986 index=2 %o A048986 while(index<=1344): %o A048986 print(str(index)+" "+str(hp(index,radix))) %o A048986 index+=1 %o A048986 (Python) %o A048986 from sympy import factorint, isprime %o A048986 def f(n): %o A048986 if n == 1: return 1 %o A048986 return int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2) %o A048986 def a(n): %o A048986 if n == 1: return 1 %o A048986 while not isprime(n): n = f(n) %o A048986 return n %o A048986 print([a(n) for n in range(1, 56)]) # _Michael S. Branicky_, Oct 07 2022 %Y A048986 Cf. A048985, A037274, A049065. %K A048986 nonn,base,nice %O A048986 1,2 %A A048986 Michael B Greenwald (mbgreen(AT)central.cis.upenn.edu)