This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A048999 #41 Jun 24 2017 00:28:29 %S A048999 1,2,-1,6,-6,1,24,-36,12,0,120,-240,120,0,-4,720,-1800,1200,0,-120,0, %T A048999 5040,-15120,12600,0,-2520,0,120,40320,-141120,141120,0,-47040,0,6720, %U A048999 0,362880,-1451520,1693440,0,-846720,0,241920,0,-12096,3628800 %N A048999 Triangle giving coefficients of (n+1)!*B_n(x), where B_n(x) is a Bernoulli polynomial, ordered by falling powers of x. %D A048999 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 9.62. %H A048999 T. D. Noe, <a href="/A048999/b048999.txt">Rows n = 0..50, flattened</a> %H A048999 D. H. Lehmer, <a href="http://www.jstor.org/stable/2322383">A new approach to Bernoulli polynomials</a>, The American mathematical monthly 95.10 (1988): 905-911. %H A048999 <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a> %F A048999 t*exp(x*t)/(exp(t)-1) = Sum_{n >= 0} B_n(x)*t^n/n!. %F A048999 a(n,m) = [x^(n-m)]((n+1)!*B_n(x)), n>=0, m=0,...,n. - _Wolfdieter Lang_, Jun 21 2011 %e A048999 B_0=1 => a(0) = 1; %e A048999 B_1(x)=x-1/2 => a(1..2) = 2, -1; %e A048999 B_2(x)=x^2-x+1/6 => a(3..5) = 6, -6, 1; %e A048999 B_3(x)=x^3-3*x^2/2+x/2 => a(6..9) = 24, -36, 12, 0; %e A048999 B_4(x)=x^4-2*x^3+x^2-1/30 => a(10..14) = 120, -240, 120, 0, -4; %e A048999 ... %t A048999 row[n_] := (n+1)!*Reverse[ CoefficientList[ BernoulliB[n, x], x]]; Flatten[ Table[ row[n], {n, 0, 9}]] (* _Jean-François Alcover_, Feb 17 2012 *) %o A048999 (PARI) P=Pol(t*exp(x*t)/(exp(t)-1)); for(i=0,15, z=polcoeff(P,i,t)*i!; print(z" => ",(i+1)!*Vec(z))) /* print B_n's and list of normalized coefficients */ \\ _M. F. Hasler_, Jun 21 2011 %Y A048999 Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999. %K A048999 sign,easy,nice,tabl %O A048999 0,2 %A A048999 _N. J. A. Sloane_ %E A048999 Name clarified by adding 'Falling powers of x.' from _Wolfdieter Lang_, Jun 21 2011 %E A048999 Values corrected by inserting a(9),a(20),a(35)=0 by _M. F. Hasler_, Jun 21 2011