cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049029 Triangle read by rows, the Bell transform of the quartic factorial numbers A007696(n+1) without column 0.

This page as a plain text file.
%I A049029 #73 Sep 04 2019 17:16:52
%S A049029 1,5,1,45,15,1,585,255,30,1,9945,5175,825,50,1,208845,123795,24150,
%T A049029 2025,75,1,5221125,3427515,775845,80850,4200,105,1,151412625,
%U A049029 108046575,27478710,3363045,219450,7770,140,1,4996616625,3824996175,1069801425
%N A049029 Triangle read by rows, the Bell transform of the quartic factorial numbers A007696(n+1) without column 0.
%C A049029 Previous name was: Triangle of numbers related to triangle A048882; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
%C A049029 a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quintic (5-ary) trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - _Wolfdieter Lang_, Sep 14 2007
%C A049029 Also the Bell transform of A007696(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 28 2016
%H A049029 F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://dx.doi.org/10.1007/3-540-55251-0_2">Varieties of Increasing Trees</a>, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
%H A049029 P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.
%H A049029 T. Copeland, <a href="https://tcjpn.wordpress.com/2008/06/12/mathemagical-forests/">Mathemagical Forests</a>
%H A049029 T. Copeland, <a href="https://tcjpn.wordpress.com/2010/12/28/14/">Addendum to Mathemagical Forests</a>
%H A049029 T. Copeland, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a>
%H A049029 M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) #09.8.3.
%H A049029 W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A049029 W. Lang, <a href="/A049029/a049029.txt">First 10 rows</a>.
%H A049029 Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104v2 [math.CO]. - From N. J. A. Sloane, Aug 21 2012
%H A049029 E. Neuwirth, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00373-3">Recursively defined combinatorial Functions: Extending Galton's board</a>, Discr. Maths. 239 (2001) 33-51.
%H A049029 Mathias Pétréolle, Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019.
%F A049029 a(n, m) = n!*A048882(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1; E.g.f. of m-th column: ((-1+(1-4*x)^(-1/4))^m)/m!.
%F A049029 a(n, m) = sum(|A051142(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to W. Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
%F A049029 From _Peter Bala_, Nov 25 2011: (Start)
%F A049029 E.g.f.: G(x,t) = exp(t*A(x)) = 1+t*x+(5*t+t^2)*x^2/2!+(45*t+15*t^2+t^3)*x^3/3!+..., where A(x) = -1+(1-4*x)^(-1/4) satisfies the autonomous differential equation A'(x) = (1+A(x))^5.
%F A049029 The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-4*x)*dG/dx, from which follows the recurrence given above.
%F A049029 The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^5*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A035469 (D = (1+x)^4*d/dx).
%F A049029 (End)
%e A049029 Triangle starts:
%e A049029 {1};
%e A049029 {5,1};
%e A049029 {45,15,1};
%e A049029 {585,255,30,1};
%e A049029 {9945,5175,825,50,1};
%e A049029 ...
%p A049029 # The function BellMatrix is defined in A264428.
%p A049029 # Adds (1,0,0,0, ..) as column 0.
%p A049029 BellMatrix(n -> mul(4*k+1, k=0..n), 9); # _Peter Luschny_, Jan 28 2016
%t A049029 a[n_, m_] /; n >= m >= 1 := a[n, m] = (4(n-1) + m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover_, Jul 22 2011 *)
%t A049029 rows = 9;
%t A049029 a[n_, m_] := BellY[n, m, Table[Product[4k+1, {k, 0, j}], {j, 0, rows}]];
%t A049029 Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018 *)
%Y A049029 a(n, m) := S2(5, n, m) is the fifth triangle of numbers in the sequence S2(1, n, m) := A008277(n, m) (Stirling 2nd kind), S2(2, n, m) := A008297(n, m) (Lah), S2(3, n, m) := A035342(n, m), S2(4, n, m) := A035469(n, m). a(n, 1)= A007696(n). A007559(n).
%Y A049029 Cf. A048882, A007696. Row sums: A049120(n), n >= 1.
%Y A049029 Cf. A094638
%K A049029 easy,nonn,tabl
%O A049029 1,2
%A A049029 _Wolfdieter Lang_
%E A049029 New name from _Peter Luschny_, Jan 30 2016