cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049037 Number of cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.

This page as a plain text file.
%I A049037 #50 Apr 23 2023 04:18:33
%S A049037 1,6,54,996,22734,577692,15680628,445162392,13055851998,392475442092,
%T A049037 12029082873372,374482032292008,11808861461931492,376406128925067528,
%U A049037 12108063535794336312,392560994063887113744,12814685828476778001726,420836267423433182275404
%N A049037 Number of cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.
%D A049037 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.
%H A049037 Alois P. Heinz, <a href="/A049037/b049037.txt">Table of n, a(n) for n = 0..200</a>
%H A049037 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/polya/flajolet.html">Symmetric Random Walk on n-Dimensional Integer Lattice</a>
%H A049037 Steven R. Finch, <a href="/A054474/a054474.txt">Symmetric Random Walk on n-Dimensional Integer Lattice</a> [Cached copy, with permission of the author]
%H A049037 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A049037 Define a_0, a_1, ... = [ 1, 6, 54, ... ] by 1+Sum b_i x^i = 1/(1-Sum a_i x^i) where b_0, b_1, ... = [ 1, 6, 90, ... ] = A002896.
%F A049037 Or, Sum[ a(n) x^(2n), n=1, 2, ...infinity ] = 1-1/Sum[ A002896(n)*x^(2n), n=0, 1, ...infinity ].
%F A049037 G.f.: 2-sqrt(1+12*z) /hypergeom([1/8, 3/8], [1], 64/81*z *(1+sqrt(1-36*z))^2 *(2+sqrt(1-36*z))^4 /(1+12*z)^4)/ hypergeom([1/8, 3/8], [1], 64/81*z *(1-sqrt(1-36*z))^2 *(2-sqrt(1-36*z))^4 /(1+12*z)^4). - _Sergey Perepechko_, Jan 30 2011
%F A049037 a(n) ~ c * 36^n / n^(3/2), where c = 0.1014559485279103938501072426734... . - _Vaclav Kotesovec_, Sep 13 2014
%F A049037 c = 384 * (3 + 2*sqrt(3)) * Pi^(9/2) / (Gamma(1/24)^4 * Gamma(11/24)^4). - _Vaclav Kotesovec_, Apr 23 2023
%e A049037 a(5) = 577692 because there are 577692 different walks that start and end at the origin after 2*5=10 steps, avoiding origin at intermediate steps.
%p A049037 read transforms; t1 := [ seq(A002896(i),i=1..25) ]; INVERTi(t1);
%p A049037 # second Maple program:
%p A049037 b:= proc(n) option remember; `if`(n<2, 5*n+1,
%p A049037       (2*(2*n-1)*(10*n^2-10*n+3) *b(n-1)
%p A049037        -36*(n-1)*(2*n-1)*(2*n-3) *b(n-2)) /n^3)
%p A049037     end:
%p A049037 g:= proc(n) g(n):= `if` (n<1, -1, -add(g(n-i) *b(i), i=1..n)) end:
%p A049037 a:= n-> abs(g(n)):
%p A049037 seq(a(n), n=0..30);  # _Alois P. Heinz_, Nov 02 2012
%t A049037 (* A002896 : *) b[n_] := b[n] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n}, {1, 1}, 4]; max = 32; a[0] = 1; se = Series[ Sum[ a[n] x^(2 n), {n, 1, max}] - 1 + 1/Sum[ b[n]*x^(2 n), {n, 0, max}], {x, 0, max}]; coes = CoefficientList[se, x]; sol = First[ Solve[ Thread[ coes == 0]]]; Table[ a[n], {n, 0, 16}] /. sol (* _Jean-François Alcover_, Dec 20 2011 *)
%t A049037 b[n_] := b[n] = If[n < 2, 5*n + 1, (2*(2*n - 1)*(10*n^2 - 10*n + 3)*b[n-1] - 36*(n - 1)*(2*n - 1)*(2*n - 3)*b[n-2]) / n^3];
%t A049037 g[n_] := g[n] = If[n < 1, -1, -Sum [g[n - i]*b[i], {i, 1, n}]];
%t A049037 a[n_] := Abs[g[n]];
%t A049037 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jan 12 2018, after _Alois P. Heinz_ *)
%Y A049037 Invert A002896, A094059.
%Y A049037 Column k=3 of A361397.
%K A049037 easy,nonn,nice
%O A049037 0,2
%A A049037 Alessandro Zinani (alzinani(AT)tin.it)