This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049074 #35 Aug 29 2025 11:40:59 %S A049074 8,3,49,7,36,55,288,15,339,46,259,67,119,302,694,31,214,357,519,66, %T A049074 148,281,633,91,658,145,101440,330,442,724,101104,63,841,248,540,393, %U A049074 535,557,2344,106,101331,190,1338,325,497,679,100979,139,806,708,1130,197 %N A049074 Ulam's conjecture (steps to return n to 1 after division by 2 and, if needed, multiplication by 3 with 1 added). %C A049074 Appeared in School Science and Mathematics in 1982. %H A049074 Enoch Haga, <a href="https://doi.org/10.1111/j.1949-8594.1983.tb10148.x">Problem</a>, School Science and Mathematics, Nov 1983, vol. 83, no 7, page 628. %H A049074 LaBar, <a href="https://doi.org/10.1111/j.1949-8594.1982.tb10084.x">Problem #3929</a>, School Science and Mathematics, Dec 1982, vol. 82 no 8, page 715. %e A049074 Beginning at n=1, algorithm produces s+t+a=8. %e A049074 a(3) = 49 because the trajectory of n=3 is (3, 10, 5, 16, 8, 4, 2, 1) and these numbers sum to 49. - _David Radcliffe_, Aug 28 2025 %o A049074 (Python) %o A049074 def a(n): %o A049074 if n==1: return 8 %o A049074 l=[n] %o A049074 while True: %o A049074 if n%2==0: n//=2 %o A049074 else: n = 3*n + 1 %o A049074 l.append(n) %o A049074 if n<2: break %o A049074 return sum(l) %o A049074 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Apr 14 2017 %Y A049074 Almost the same as A033493. %Y A049074 Cf. A049067. %K A049074 easy,nonn,changed %O A049074 1,1 %A A049074 _Enoch Haga_