This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049085 #50 Sep 22 2023 05:18:14 %S A049085 0,1,2,1,3,2,1,4,3,2,2,1,5,4,3,3,2,2,1,6,5,4,3,4,3,2,3,2,2,1,7,6,5,4, %T A049085 5,4,3,3,4,3,2,3,2,2,1,8,7,6,5,4,6,5,4,4,3,5,4,3,3,2,4,3,2,3,2,2,1,9, %U A049085 8,7,6,5,7,6,5,4,5,4,3,6,5,4,4,3,3,5,4,3,3,2,4,3,2,3,2,2,1,10,9,8,7,6,5,8,7,6 %N A049085 Irregular table T(n,k) = maximal part of the k-th partition of n, when listed in Abramowitz-Stegun order (as in A036043). %C A049085 a(0) = 0 by convention. - _Franklin T. Adams-Watters_, Jun 24 2014 %C A049085 Like A036043 this is important for calculating sequences defined over the numeric partitions, cf. A000041. For example, the triangular array A019575 can be calculated using A036042 and this sequence. %C A049085 The row sums are A006128. - _Johannes W. Meijer_, Jun 21 2010 %C A049085 The name is correct if the partitions are read in reverse, so that the parts are weakly increasing. The version for non-reversed partitions is A334441. - _Gus Wiseman_, May 21 2020 %D A049085 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831. %H A049085 Alois P. Heinz, <a href="/A049085/b049085.txt">Rows n = 0..26, flattened</a> %H A049085 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A049085 Wolfdieter Lang, <a href="/A049085/a049085.txt">First 15 rows</a>. %H A049085 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A049085 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A049085 Rows: %e A049085 [0]; %e A049085 [1]; %e A049085 [2,1]; %e A049085 [3,2,1]; %e A049085 [4,3,2,2,1]; %e A049085 [5,4,3,3,2,2,1]; %e A049085 ... %p A049085 with(combinat): %p A049085 nmax:=9: %p A049085 for n from 1 to nmax do %p A049085 y(n):=numbpart(n): %p A049085 P(n):=partition(n): %p A049085 for k from 1 to y(n) do %p A049085 B(k):=P(n)[k] %p A049085 od: %p A049085 for k from 1 to y(n) do %p A049085 s:=0: j:=0: %p A049085 while s<n do %p A049085 j:=j+1: s:=s+B(k)[j]: Q(n,k):=j; %p A049085 end do: %p A049085 od: %p A049085 od: %p A049085 T:=0: %p A049085 for n from 1 to nmax do %p A049085 for j from 1 to numbpart(n) do %p A049085 T:=T+1: %p A049085 a(T):= Q(n,j) %p A049085 od; %p A049085 od: %p A049085 0, seq(a(n),n=1..T); # _Johannes W. Meijer_, Jun 21 2010 %t A049085 Table[If[n==0,{0},Max/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}] (* _Gus Wiseman_, May 21 2020 *) %o A049085 (PARI) A049085(n,k)=if(n,partitions(n)[k][1],0) \\ _M. F. Hasler_, Jun 06 2018 %Y A049085 Row lengths are A000041. %Y A049085 Row sums are A006128. %Y A049085 The length of the partition is A036043. %Y A049085 The number of distinct elements of the partition is A103921. %Y A049085 The Heinz number of the partition is A185974. %Y A049085 The version ignoring length is A194546. %Y A049085 The version for non-reversed partitions is A334441. %Y A049085 Lexicographically ordered reversed partitions are A026791. %Y A049085 Reversed partitions in Abramowitz-Stegun order are A036036. %Y A049085 Reverse-lexicographically ordered partitions are A080577. %Y A049085 Partitions in Abramowitz-Stegun order are A334301. %Y A049085 Cf. A001221, A036037, A036042, A115623, A124734, A193073, A334302, A334433, A334438, A334439, A334440. %K A049085 nice,nonn,tabf,look %O A049085 0,3 %A A049085 _Alford Arnold_ %E A049085 More terms from _Wolfdieter Lang_, Apr 28 2005 %E A049085 a(0) inserted by _Franklin T. Adams-Watters_, Jun 24 2014