A049171 Revert transform of 2*x*(1-x)-x/(1+x).
1, 1, 3, 9, 33, 125, 503, 2081, 8849, 38345, 168875, 753401, 3398177, 15469493, 70984559, 327982529, 1524644897, 7125440913, 33459931155, 157794990633, 747021246817, 3548843286829, 16912921740775, 80836929471329, 387397148131889, 1861088017162457
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for reversions of series
Programs
-
Mathematica
Table[Sum[Binomial[3*k,k]*Binomial[n-1+k,3*k]/(2k+1)*2^k,{k,0,Floor[(n-1)/2]}],{n,1,20}] (* Vaclav Kotesovec, Oct 24 2012 *)
Formula
a(n+1) = Sum_{k=0..floor(n/2)} A108759(n,k)*2^k. - Philippe Deléham, Dec 08 2009
Recurrence: 4*(n-1)*n*a(n) = 2*(n-1)*(5*n-6)*a(n-1) + 3*(16*n^2 - 67*n + 69)*a(n-2) + (25*n^2 - 169*n + 285)*a(n-3) + (n-4)*(2*n-9)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(sqrt(3)-1)*((5+3*sqrt(3))/2)^n/(2*sqrt(6*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
Extensions
NAME corrected by R. J. Mathar, Jul 23 2023
Comments