A049198 Numbers that are not squarefree and whose Euler totient function is squarefree.
4, 9, 18, 49, 98, 121, 242, 529, 961, 1058, 1849, 1922, 2209, 3481, 3698, 4418, 4489, 5041, 6241, 6889, 6962, 8978, 10082, 10609, 11449, 12482, 13778, 17161, 19321, 21218, 22898, 27889, 32041, 34322, 36481, 38642, 44521, 49729, 51529, 55778, 57121, 64082, 69169
Offset: 1
Keywords
Examples
a(27) = 13778 = 2*83*83 is divisible by a square, but phi(13778) = 6806 = 2*41*83 is squarefree.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
Select[Range[70000], Abs[ MoebiusMu[ EulerPhi[ # ] ] ] == 1 && Abs[ MoebiusMu[ # ] ] == 0 &]
-
PARI
isok(k)=!issquarefree(k) && issquarefree(eulerphi(k)) \\ Donovan Johnson, Jun 20 2012
Comments