This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049213 #21 Oct 08 2017 17:39:53 %S A049213 1,6,1,56,12,1,616,148,18,1,7392,1904,276,24,1,93632,25312,4080,440, %T A049213 30,1,1230592,344960,59808,7360,640,36,1,16612992,4792128,876960, %U A049213 118224,11960,876,42,1,228890112,67586816,12900416,1860992,209200,18096,1148 %N A049213 A convolution triangle of numbers obtained from A025749. %C A049213 a(n,1) = A025749(n); a(n,1)= 4^(n-1)*3*A034176(n-1)/n!, n >= 2. %C A049213 G.f. for m-th column: ((1-(1-16*x)^(1/4))/4)^m. %H A049213 W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4. %F A049213 a(n, m) = 4*(4*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0; a(1, 1)=1. %F A049213 a(n,m) = (m/n) * 4^(n-m) * Sum_{k=1..n-m} binomial(n+k-1, n-1) * Sum_{j=0..k} binomial(j, n-m-3*k+2*j) * 4^(j-k) * binomial(k,j) * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j), n > m; a(n,n)=1. - _Vladimir Kruchinin_, Feb 08 2011 %t A049213 a[n_, n_] = 1; a[n_, m_] := m/n * 4^(n-m) * Sum[ Binomial[n+k-1, n-1] * Sum[ Binomial[j, n-m-3*k+2*j] * 4^(j-k) * Binomial[k, j] * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j), {j, 0, k}], {k, 1, n-m}]; Table[a[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 05 2013, after _Vladimir Kruchinin_ *) %Y A049213 Cf. A048966. Row sums = A025757. %K A049213 easy,nonn,tabl %O A049213 1,2 %A A049213 _Wolfdieter Lang_