This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049222 #20 Jul 31 2015 11:12:22 %S A049222 0,0,0,1,4,13,41,130,415,1329,4260,13657,43781,140346,449891,1442157, %T A049222 4622932,14819125,47503729,152276498,488132887,1564743865,5015895108, %U A049222 16078800033,51541709869,165220529546,529625878779,1697752526549 %N A049222 Number of horizontally convex n-ominoes in which the top row has exactly 1 square, which is not above the rightmost square in the second row and the rightmost square in the second row is above the leftmost square in the third row. %H A049222 Dean Hickerson, <a href="http://www.cs.uwaterloo.ca/journals/JIS/HICK2/chcp.html">Counting Horizontally Convex Polyominoes</a>, J. Integer Sequences, Vol. 2 (1999), #99.1.8. %H A049222 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5, -7, 4). %F A049222 G.f.: x^4 (1-x)/(1-5x+7x^2-4x^3). %F A049222 a(n) = 5*a(n-1) - 7*a(n-2) + 4*a(n-3) for n >= 6. %F A049222 a(n) = a(n-1) + A049220(n-1) for n >= 2. %t A049222 a[ n_ ] := a[ n ]=If[ n<6, {0, 0, 0, 1, 4}[ [ n ] ], 5a[ n-1 ]-7a[ n-2 ]+4a[ n-3 ] ] %t A049222 Join[{0,0,0},LinearRecurrence[{5,-7,4},{0,1,4},30]] (* or *) CoefficientList[ Series[x^4 (1-x)/(1-5x+7x^2-4x^3),{x,0,30}],x] (* _Harvey P. Dale_, May 10 2011 *) %Y A049222 Cf. A049220. %K A049222 nonn,easy %O A049222 1,5 %A A049222 _Dean Hickerson_, Aug 10 1999