This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049287 #44 Feb 16 2025 08:32:40 %S A049287 1,2,2,4,3,8,4,12,8,20,8,48,14,48,44,84,36,192,60,336,200,416,188, %T A049287 1312,423,1400,928,3104,1182,8768,2192,8364,6768,16460,11144,46784, %U A049287 14602,58288,44424,136128,52488,355200,99880,432576,351424,762608,364724,2122944,798952,3356408 %N A049287 Number of nonisomorphic circulant graphs, i.e., undirected Cayley graphs for the cyclic group of order n. %C A049287 Further values for (twice) squarefree and (twice) prime-squared orders can be found in the Liskovets reference. %C A049287 Terms may be computed by filtering potentially isomorphic graphs of A285620 through nauty. - _Andrew Howroyd_, Apr 29 2017 %H A049287 Andrew Howroyd, <a href="/A049287/b049287.txt">Table of n, a(n) for n = 1..70</a> %H A049287 V. Gatt, <a href="https://arxiv.org/abs/1703.06038">On the Enumeration of Circulant Graphs of Prime-Power Order: the case of p^3</a>, arXiv:1703.06038 [math.CO], 2017. %H A049287 V. A. Liskovets, <a href="https://arxiv.org/abs/math/0104131">Some identities for enumerators of circulant graphs</a>, arXiv:math/0104131 [math.CO], 2001; <a href="http://dx.doi.org/10.1023/B:JACO.0000011937.70237.0b">J. Alg. Comb. 18 (2003) 189</a>. %H A049287 V. A. Liskovets and R. Poeschel, <a href="https://citeseerx.ist.psu.edu/pdf/b76573e0c2df2ff117cef015809e232a3747f585">On the enumeration of circulant graphs of prime-power and squarefree orders</a>. %H A049287 Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/nauty/">Nauty home page</a>. %H A049287 R. Poeschel, <a href="http://www.math.tu-dresden.de/~poeschel/Publikationen.html">Publications</a>. %H A049287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantGraph.html">Circulant Graph</a>. %H A049287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantMatrix.html">Circulant Matrix</a>. %F A049287 There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders. %F A049287 From _Andrew Howroyd_, Apr 24 2017: (Start) %F A049287 a(n) <= A285620(n). %F A049287 a(n) = A285620(n) for n squarefree or twice square free. %F A049287 a(A000040(n)^2) = A038781(n). %F A049287 a(n) = Sum_{d|n} A075545(d). %F A049287 (End) %t A049287 CountDistinct /@ Table[CanonicalGraph[CirculantGraph[n, #]] & /@ Subsets[Range[Floor[n/2]]], {n, 25}] (* _Eric W. Weisstein_, May 13 2017 *) %Y A049287 Cf. A049297, A049288, A049289, A060966, A285620, A038781, A075545. %K A049287 nonn,nice %O A049287 1,2 %A A049287 _Valery A. Liskovets_ %E A049287 a(48)-a(50) from _Andrew Howroyd_, Apr 29 2017