cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049287 Number of nonisomorphic circulant graphs, i.e., undirected Cayley graphs for the cyclic group of order n.

This page as a plain text file.
%I A049287 #44 Feb 16 2025 08:32:40
%S A049287 1,2,2,4,3,8,4,12,8,20,8,48,14,48,44,84,36,192,60,336,200,416,188,
%T A049287 1312,423,1400,928,3104,1182,8768,2192,8364,6768,16460,11144,46784,
%U A049287 14602,58288,44424,136128,52488,355200,99880,432576,351424,762608,364724,2122944,798952,3356408
%N A049287 Number of nonisomorphic circulant graphs, i.e., undirected Cayley graphs for the cyclic group of order n.
%C A049287 Further values for (twice) squarefree and (twice) prime-squared orders can be found in the Liskovets reference.
%C A049287 Terms may be computed by filtering potentially isomorphic graphs of A285620 through nauty. - _Andrew Howroyd_, Apr 29 2017
%H A049287 Andrew Howroyd, <a href="/A049287/b049287.txt">Table of n, a(n) for n = 1..70</a>
%H A049287 V. Gatt, <a href="https://arxiv.org/abs/1703.06038">On the Enumeration of Circulant Graphs of Prime-Power Order: the case of p^3</a>, arXiv:1703.06038 [math.CO], 2017.
%H A049287 V. A. Liskovets, <a href="https://arxiv.org/abs/math/0104131">Some identities for enumerators of circulant graphs</a>, arXiv:math/0104131 [math.CO], 2001; <a href="http://dx.doi.org/10.1023/B:JACO.0000011937.70237.0b">J. Alg. Comb. 18 (2003) 189</a>.
%H A049287 V. A. Liskovets and R. Poeschel, <a href="https://citeseerx.ist.psu.edu/pdf/b76573e0c2df2ff117cef015809e232a3747f585">On the enumeration of circulant graphs of prime-power and squarefree orders</a>.
%H A049287 Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/nauty/">Nauty home page</a>.
%H A049287 R. Poeschel, <a href="http://www.math.tu-dresden.de/~poeschel/Publikationen.html">Publications</a>.
%H A049287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantGraph.html">Circulant Graph</a>.
%H A049287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CirculantMatrix.html">Circulant Matrix</a>.
%F A049287 There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.
%F A049287 From _Andrew Howroyd_, Apr 24 2017: (Start)
%F A049287 a(n) <= A285620(n).
%F A049287 a(n) = A285620(n) for n squarefree or twice square free.
%F A049287 a(A000040(n)^2) = A038781(n).
%F A049287 a(n) = Sum_{d|n} A075545(d).
%F A049287 (End)
%t A049287 CountDistinct /@ Table[CanonicalGraph[CirculantGraph[n, #]] & /@ Subsets[Range[Floor[n/2]]], {n, 25}] (* _Eric W. Weisstein_, May 13 2017 *)
%Y A049287 Cf. A049297, A049288, A049289, A060966, A285620, A038781, A075545.
%K A049287 nonn,nice
%O A049287 1,2
%A A049287 _Valery A. Liskovets_
%E A049287 a(48)-a(50) from _Andrew Howroyd_, Apr 29 2017