cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049288 Number of nonisomorphic circulant tournaments, i.e., Cayley tournaments for cyclic group of order 2n-1.

This page as a plain text file.
%I A049288 #37 Aug 06 2024 06:31:30
%S A049288 1,1,1,2,3,4,6,16,16,30,88,94,205,457,586,1096,3280,5472,7286,21856,
%T A049288 26216,49940,174848,182362,399472,1048576,1290556,3355456,7456600,
%U A049288 9256396,17895736,59654816,89478656,130150588,390451576,490853416,954437292
%N A049288 Number of nonisomorphic circulant tournaments, i.e., Cayley tournaments for cyclic group of order 2n-1.
%C A049288 Further values for prime-squared orders can be found in A038789.
%C A049288 There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.
%H A049288 B. Alspach, <a href="/A002086/a002086.pdf">On point-symmetric tournaments</a>, Canad. Math. Bull., 13 (1970), 317-323. [Annotated copy] See r(n).
%H A049288 B. Alspach, <a href="http://dx.doi.org/10.4153/CMB-1970-061-7">On point-symmetric tournaments</a>, Canad. Math. Bull., 13 (1970), 317-323. See r(n).
%H A049288 V. A. Liskovets, <a href="https://arxiv.org/abs/math/0104131">Some identities for enumerators of circulant graphs</a>, arXiv:math/0104131 [math.CO], 2001.
%H A049288 V. A. Liskovets and R. Poeschel, <a href="https://citeseerx.ist.psu.edu/pdf/b76573e0c2df2ff117cef015809e232a3747f585">On the enumeration of circulant graphs of prime-power and squarefree orders</a>
%H A049288 R. Poeschel, <a href="http://www.math.tu-dresden.de/~poeschel/Publikationen.html">Publications</a>
%H A049288 <a href="/index/To#tournament">Index entries for sequences related to tournaments</a>
%F A049288 a(n) <= A002086(n). - _Andrew Howroyd_, Apr 28 2017
%F A049288 a(n) = A002086(n) for squarefree 2n-1. - _Andrew Howroyd_, Apr 28 2017
%Y A049288 Cf. A002086, A002087, A038789, A049297, A049287, A049289, A060966.
%K A049288 nonn,nice
%O A049288 1,4
%A A049288 _Valery A. Liskovets_
%E A049288 a(14)-a(37) from _Andrew Howroyd_, Apr 28 2017
%E A049288 Reference to Alspach (1970) corrected by _Andrew Howroyd_, Apr 28 2017