cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049323 Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.

This page as a plain text file.
%I A049323 #25 Sep 08 2022 08:44:58
%S A049323 1,1,1,1,3,3,1,6,16,16,1,10,50,125,125,1,15,120,540,1296,1296,1,21,
%T A049323 245,1715,7203,16807,16807,1,28,448,4480,28672,114688,262144,262144,1,
%U A049323 36,756,10206,91854,551124,2125764,4782969,4782969,1,45,1200,21000,252000
%N A049323 Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.
%C A049323 These polynomials p(n, x) appear in the W. Lang reference as c1(-(n+1);x), n >= 0 on p.12. The coefficients are given there in eq.(44) on p. 6. - _Wolfdieter Lang_, Nov 20 2015
%H A049323 W. Lang, <a href="https://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%F A049323 a(n, m) = A033842(n, n-m) = binomial(n+1, m+1)*(n+1)^{m-1}, n >= m >= 0, else 0.
%F A049323 p(k-1, -x)/(1-k*x)^k =(-1+1/(1-k*x)^k)/(x*k^2) is for k=1..5 G.f. for A000012, A001792, A036068, A036070, A036083, respectively.
%F A049323 From _Werner Schulte_, Oct 19 2015: (Start)
%F A049323 a(2*n,n) = A000108(n)*(2*n+1)^n;
%F A049323 a(3*n,2*n) = A001764(n)*(3*n+1)^(2*n);
%F A049323 a(p*n,(p-1)*n) = binomial(p*n,n)/((p-1)*n+1)*(p*n+1)^((p-1)*n) for p > 0;
%F A049323 Sum_{m=0..n} (m+1)*a(n,m) = (n+2)^n;
%F A049323 Sum_{m=0..n} (-1)^m*(m+1)*a(n,m) = (-n)^n where 0^0 = 1;
%F A049323 p(n,x) = Sum_{m=0..n} a(n,m)*x^m = ((1+(n+1)*x)^(n+1)-1)/((n+1)^2*x).
%F A049323 (End)
%e A049323 The triangle a(n, m) begins:
%e A049323 n\m 0  1   2    3     4      5      6      7 ...
%e A049323 0:  1
%e A049323 1:  1  1
%e A049323 2:  1  3   3
%e A049323 3:  1  6  16   16
%e A049323 4:  1 10  50  125  125
%e A049323 5:  1 15 120  540  1296  1296
%e A049323 6:  1 21 245 1715  7203  16807  16807
%e A049323 7:  1 28 448 4480 28672 114688 262144 262144
%e A049323 ... reformatted. - Wolfdieter Lang, Nov 20 2015
%e A049323 E.g. the third row {1,3,3} corresponds to polynomial p(2,x)= 1 + 3*x + 3*x^2.
%p A049323 seq(seq(binomial(n+1,m+1)*(n+1)^(m-1),m=0..n),n=0..10); # _Robert Israel_, Oct 19 2015
%t A049323 Table[Binomial[n + 1, k + 1] (n + 1)^(k - 1), {n, 0, 9}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Nov 19 2015 *)
%o A049323 (Magma) /* As triangle: */ [[Binomial(n+1, k+1)*(n+1)^(k-1): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Nov 20 2015
%Y A049323 a(n, 0)= A000012 (powers of 1), a(n, 1)= A000217 (triangular numbers), a(n, n)= A000272(n+1), n >= 0 (diagonal), a(n, n-1)= A000272(n+1), n >= 1.
%Y A049323 For n = 0..5 the row sequences a(n, m), m >= 0, are the first columns of the triangles A023531 (unit matrix), A030528, A049324, A049325, A049326, A049327, respectively.
%Y A049323 Cf. A033842, A046757.
%K A049323 nonn,tabl,easy
%O A049323 0,5
%A A049323 _Wolfdieter Lang_