A049325 A convolution triangle of numbers generalizing Pascal's triangle A007318.
1, 6, 1, 16, 12, 1, 16, 68, 18, 1, 0, 224, 156, 24, 1, 0, 448, 840, 280, 30, 1, 0, 512, 3072, 2080, 440, 36, 1, 0, 256, 7872, 10896, 4160, 636, 42, 1, 0, 0, 14080, 42240, 28240, 7296, 868, 48, 1, 0, 0, 16896, 123904, 145376, 60720, 11704, 1136, 54, 1, 0, 0, 12288
Offset: 1
Examples
{1}; {6,1}; {16,12,1}; {16,68,18,1}; {0,224,156,24,1}; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Formula
a(n, m) = 4*(4*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(3, m)).