A049326 A convolution triangle of numbers generalizing Pascal's triangle A007318.
1, 10, 1, 50, 20, 1, 125, 200, 30, 1, 125, 1250, 450, 40, 1, 0, 5250, 4375, 800, 50, 1, 0, 15000, 30375, 10500, 1250, 60, 1, 0, 28125, 157500, 100500, 20625, 1800, 70, 1, 0, 31250, 621875, 740000, 250625, 35750, 2450, 80, 1, 0, 15625, 1875000, 4318750
Offset: 1
Examples
{1}; {10,1}; {50,20,1}; {125,200,30,1}; {125,1250,450,40,1}; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Formula
a(n, m) = 5*(5*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(4, m)).