A049327 A convolution triangle of numbers generalizing Pascal's triangle A007318.
1, 15, 1, 120, 30, 1, 540, 465, 45, 1, 1296, 4680, 1035, 60, 1, 1296, 33192, 15795, 1830, 75, 1, 0, 171072, 176688, 37260, 2850, 90, 1, 0, 641520, 1521828, 563409, 72450, 4095, 105, 1, 0, 1710720, 10359360, 6686064, 1375605, 124740, 5565, 120, 1
Offset: 1
Examples
{1}; {15,1}; {120,30,1}; {540,465,45,1}; {1296,4680,1035,60,1}; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Formula
a(n, m) = 6*(6*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(5, m)).