A049404 Triangle read by rows, the Bell transform of n!*binomial(2,n) (without column 0).
1, 2, 1, 2, 6, 1, 0, 20, 12, 1, 0, 40, 80, 20, 1, 0, 40, 360, 220, 30, 1, 0, 0, 1120, 1680, 490, 42, 1, 0, 0, 2240, 9520, 5600, 952, 56, 1, 0, 0, 2240, 40320, 48720, 15120, 1680, 72, 1, 0, 0, 0, 123200, 332640, 184800, 35280, 2760, 90, 1, 0, 0, 0, 246400, 1786400
Offset: 1
Examples
E.g. row polynomial E(3,x) = 2*x+6*x^2+x^3. Triangle starts: {1} {2, 1} {2, 6, 1} {0, 20, 12, 1}
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First 10 rows of the array and more. [From _Wolfdieter Lang_, Oct 17 2008]
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 11; a[n_, m_] := BellY[n, m, Table[k! Binomial[2, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, m) = n!*A049324(n, m)/(m!*3^(n-m));
a(n, m) = (3*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: ((x+x^2+(x^3)/3)^m)/m!.
a(n,m) = n!/(3^m * m!)*(Sum_{i=0..floor(m-n/3)} (-1)^i * binomial(m,i) * binomial(3*m-3*i,n)), 0 for empty sums. - Werner Schulte, Feb 20 2020
Extensions
New name from Peter Luschny, Jan 16 2016
Comments