A049410 A triangle of numbers related to triangle A049325.
1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
Offset: 1
Examples
Triangle begins: {1}; {3,1}; {6,9,1}; {6,51,18,1}; ... E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Row sums give A049426.
Programs
-
Mathematica
rows = 10; t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; M = Inverse[Array[T, {rows, rows}]] // Abs; A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
Sage
# uses[inverse_bell_transform from A265605] # Adds a column 1,0,0,0,... at the left side of the triangle. multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1)) inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015
Formula
a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
Comments