A049411 Triangle read by rows, the Bell transform of n!*binomial(5,n) (without column 0).
1, 5, 1, 20, 15, 1, 60, 155, 30, 1, 120, 1300, 575, 50, 1, 120, 9220, 8775, 1525, 75, 1, 0, 55440, 114520, 36225, 3325, 105, 1, 0, 277200, 1315160, 730345, 112700, 6370, 140, 1, 0, 1108800, 13428800, 13000680, 3209745, 291060, 11130, 180, 1, 0, 3326400
Offset: 1
Examples
Row polynomial E(3,x) = 20*x + 15*x^2 + x^3. Triangle starts: { 1} { 5, 1} { 20, 15, 1} { 60, 155, 30, 1} {120, 1300, 575, 50, 1}
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 10; a[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds 1,0,0,0,... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, m) = n!*A049327(n, m)/(m!*6^(n-m));
a(n, m) = (6*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: (((-1+(1+x)^6)/6)^m)/m!.
Extensions
New name from Peter Luschny, Jan 16 2016
Comments