cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049412 Row sums of triangle A049385.

This page as a plain text file.
%I A049412 #31 Jan 17 2025 09:29:18
%S A049412 1,7,85,1465,32677,894103,28977817,1085272945,46112305897,
%T A049412 2191384887175,115164935076445,6631403822046697,415179375712149517,
%U A049412 28079663069162365207,2040146099677929685345,158473205735310372796897,13105410949812720002967889,1149574078597445578977405319
%N A049412 Row sums of triangle A049385.
%C A049412 Generalized Bell numbers B(6,1;n).
%H A049412 Vincenzo Librandi, <a href="/A049412/b049412.txt">Table of n, a(n) for n = 1..360</a>
%H A049412 P. Blasiak, K. A. Penson and A. I. Solomon, <a href="https://doi.org/10.1016/S0375-9601(03)00194-4">The general boson normal ordering problem</a>, Phys. Lett. A 309 (2003) 198-205.
%H A049412 P. Blasiak, K. A. Penson and A. I. Solomon, <a href="https://arxiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.
%H A049412 W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%F A049412 E.g.f.: exp(-1+1/(1-5*x)^(1/5))-1.
%F A049412 a(n) = (1/e) * (-5)^n * n! * Sum_{k>=0} binomial(-k/5,n)/k!. - _Seiichi Manyama_, Jan 17 2025
%t A049412 terms = 16;
%t A049412 Rest[CoefficientList[Exp[-1+1/(1-5x)^(1/5)]-1+O[x]^(terms+1), x]] Range[ terms]! (* _Jean-François Alcover_, Nov 11 2018 *)
%Y A049412 Cf. Generalized Bell numbers B(m, 1, n): A049118 (m=3), A049119 (m=4), A049120 (m=5), this sequence (m=6).
%K A049412 nonn
%O A049412 1,2
%A A049412 _Wolfdieter Lang_