This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049419 #74 Feb 16 2025 08:32:40 %S A049419 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,3,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1, %T A049419 1,4,1,1,1,2,1,1,1,2,2,1,1,3,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,4,1,1,1,2, %U A049419 1,1,1,4,1,1,2,2,1,1,1,3,3,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,2,2,4,1,1 %N A049419 a(1) = 1; for n > 1, a(n) = number of exponential divisors of n. %C A049419 The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i. %C A049419 Wu gives a complicated Dirichlet g.f. %C A049419 a(1) = 1 by convention. This is also required for a function to be multiplicative. - _N. J. A. Sloane_, Mar 03 2009 %C A049419 The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - _R. J. Mathar_, Jul 14 2014 %H A049419 Reinhard Zumkeller, <a href="/A049419/b049419.txt">Table of n, a(n) for n = 1..10000</a> %H A049419 Andrew V. Lelechenko, <a href="http://arxiv.org/abs/1405.7597">Exponential and infinitary divisors</a>, arXiv:1405.7597 [math.NT], 2014, sequence tau^(e). %H A049419 David Moews, <a href="http://djm.cc/aliquot-database/aliquot-database.uhtml">A database of aliquot cycles</a>. %H A049419 J. O. M. Pedersen, <a href="http://62.198.248.44/aliquot/tables.htm">Tables of Aliquot Cycles</a>. %H A049419 J. O. M. Pedersen, <a href="http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm">Tables of Aliquot Cycles</a>. [Via Internet Archive Wayback-Machine] %H A049419 J. O. M. Pedersen, <a href="/A063990/a063990.pdf">Tables of Aliquot Cycles</a>. [Cached copy, pdf file only] %H A049419 László Tóth and Nicuşor Minculete, <a href="http://arxiv.org/abs/0910.2798">Exponential unitary divisors</a>, arXiv:0910.2798 [math.NT], 2009. %H A049419 Tim Trudgian, <a href="http://arxiv.org/abs/1312.4615">The sum of the unitary divisor function</a>, arXiv:1312.4615 [math.NT], 2013-2014, Section 3. %H A049419 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/e-Divisor.html">e-Divisor</a>. %H A049419 Jie Wu, <a href="http://dx.doi.org/10.5802/jtnb.136">Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré</a>, J. Theor. Nombr. Bordeaux 7 (1) (1995) 133-141. %F A049419 Multiplicative with a(p^e) = tau(e). - _Vladeta Jovovic_, Jul 23 2001 %F A049419 Sum_{k=1..n} a(k) ~ A327837 * n. - _Vaclav Kotesovec_, Feb 27 2023 %e A049419 a(8)=2 because 2 and 2^3 are e-divisors of 8. %e A049419 The sets of e-divisors start as: %e A049419 1:{1} %e A049419 2:{2} %e A049419 3:{3} %e A049419 4:{2, 4} %e A049419 5:{5} %e A049419 6:{6} %e A049419 7:{7} %e A049419 8:{2, 8} %e A049419 9:{3, 9} %e A049419 10:{10} %e A049419 11:{11} %e A049419 12:{6, 12} %e A049419 13:{13} %e A049419 14:{14} %e A049419 15:{15} %e A049419 16:{2, 4, 16} %e A049419 17:{17} %e A049419 18:{6, 18} %e A049419 19:{19} %e A049419 20:{10, 20} %e A049419 21:{21} %e A049419 22:{22} %e A049419 23:{23} %e A049419 24:{6, 24} %p A049419 A049419 := proc(n) %p A049419 local a; %p A049419 a := 1 ; %p A049419 for pf in ifactors(n)[2] do %p A049419 a := a*numtheory[tau](op(2,pf)) ; %p A049419 end do: %p A049419 a ; %p A049419 end proc: %p A049419 seq(A049419(n),n=1..20) ; # _R. J. Mathar_, Jul 14 2014 %t A049419 a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* _Jean-François Alcover_, Jan 30 2012, after _Vladeta Jovovic_ *) %o A049419 (Haskell) %o A049419 a049419 = product . map (a000005 . fromIntegral) . a124010_row %o A049419 -- _Reinhard Zumkeller_, Mar 13 2012 %o A049419 (GAP) A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # _Muniru A Asiru_, Oct 29 2017 %o A049419 (PARI) a(n) = vecprod(apply(numdiv, factor(n)[,2])); \\ _Amiram Eldar_, Mar 27 2023 %Y A049419 Row lengths of A322791. %Y A049419 Cf. A049599, A061389, A051377 (sum of e-divisors). %Y A049419 Partial sums are in A099593. %Y A049419 Cf. A124010, A000005, A049599, A072911, A124315, A166234, A327837, A361012. %K A049419 nonn,mult,nice %O A049419 1,4 %A A049419 _Yasutoshi Kohmoto_ %E A049419 More terms from _Jud McCranie_, May 29 2000