A049424 Triangle read by rows, the Bell transform of n!*binomial(4,n) (without column 0).
1, 4, 1, 12, 12, 1, 24, 96, 24, 1, 24, 600, 360, 40, 1, 0, 3024, 4200, 960, 60, 1, 0, 12096, 40824, 17640, 2100, 84, 1, 0, 36288, 338688, 270144, 55440, 4032, 112, 1, 0, 72576, 2407104, 3580416, 1212624, 144144, 7056, 144, 1, 0, 72576, 14515200, 41791680
Offset: 1
Examples
E.g., row polynomial E(3,x) = 12*x + 12*x^2 + x^3. Triangle starts: 1; 4, 1; 12, 12, 1; 24, 96, 24, 1; 24, 600, 360, 40, 1;
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 10; a[n_, m_] := BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, m) = n!*A049326(n, m)/(m!*5^(n-m));
a(n, m) = (5*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: (((-1+(1+x)^5)/5)^m)/m!.
Extensions
New name from Peter Luschny, Jan 16 2016
Comments