This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049427 #26 Jan 18 2025 09:05:52 %S A049427 1,1,5,25,145,1025,8245,72745,704705,7424065,83940805,1012504505, %T A049427 12972555025,175624847425,2501468566325,37364323364425, %U A049427 583569693556225,9504040277271425,161021013457176325,2832196631069755225,51619359912771959825 %N A049427 Row sums of triangle A049424. %H A049427 Seiichi Manyama, <a href="/A049427/b049427.txt">Table of n, a(n) for n = 0..510</a> %H A049427 W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4. %F A049427 E.g.f.: exp((-1+(1+x)^5)/5). %F A049427 a(n) = n! * sum(k=0..n, sum(j=0..k, binomial(5*j,n) * (-1)^(k-j)/(5^k * (k-j)!*j!))). - _Vladimir Kruchinin_, Feb 07 2011 %F A049427 D-finite with recurrence a(n) -a(n-1) +4*(-n+1)*a(n-2) -6*(n-1)*(n-2)*a(n-3) -4*(n-1)*(n-2)*(n-3)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jun 23 2023 %F A049427 a(n) = Sum_{k=0..n} Stirling1(n,k) * A005011(k). - _Seiichi Manyama_, Jan 31 2024 %F A049427 a(n) = (1/exp(1/5)) * n! * Sum_{k>=0} binomial(5*k,n)/(5^k * k!). - _Seiichi Manyama_, Jan 18 2025 %Y A049427 Column of A293991. %Y A049427 Row sums of A157394. %Y A049427 Cf. A005011. %K A049427 easy,nonn %O A049427 0,3 %A A049427 _Wolfdieter Lang_