This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049435 #24 Dec 02 2020 08:18:59 %S A049435 1,55,1705,39325,752752,12662650,193754990,2758334150,37112163803, %T A049435 477297033785,5917584964655,71187132291275,835143799377954, %U A049435 9593401297313460,108254081784931500,1203163392175387500,13199555372846848005,143197070509423605675 %N A049435 Stirling numbers of second kind: 10th column of Stirling2 triangle A008277. %D A049435 See A000771. %H A049435 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800). %F A049435 G.f.: x^10/Product_{k=1..10} (1-k*x). %F A049435 E.g.f.: ((exp(x)-1)^10)/10!. %F A049435 a(n) = det(|s(i+10,j+9)|, 1 <= i,j <= n-10), where s(n,k) are Stirling numbers of the first kind. - _Mircea Merca_, Apr 06 2013 %t A049435 lst={};Do[f=StirlingS2[n, 10];AppendTo[lst, f], {n, 10, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008 *) %t A049435 CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x) (1 - 9 x) (1 - 10 x)), {x, 0, 25}], x] (* _Vladimir Joseph Stephan Orlovsky_, Jun 20 2011 *) %t A049435 StirlingS2[Range[10,35],10] (* _Harvey P. Dale_, Nov 07 2020 *) %Y A049435 Cf. A000225, A000392, A000453, A000481, A000770, A000771, A049434, A049447. a(n) = A008277(n, 10). %K A049435 easy,nonn %O A049435 10,2 %A A049435 _Wolfdieter Lang_