This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049447 #19 Dec 12 2022 17:10:02 %S A049447 1,45,1155,22275,359502,5135130,67128490,820784250,9528822303, %T A049447 106175395755,1144614626805,12011282644725,123272476465204, %U A049447 1241963303533920,12320068811796900,120622574326072500,1167921451092973005,11201516780955125625,106563273280541795575 %N A049447 Stirling numbers of second kind: 9th column of Stirling2 triangle A008277. %D A049447 See A000771. %F A049447 a(n)= A008277(n, 9). %F A049447 G.f.: x^9/product_{k=1..9} (1-k*x). %F A049447 E.g.f.: ((exp(x)-1)^9)/9!. %F A049447 a(n) = det(|s(i+9,j+8)|, 1 <= i,j <= n-9), where s(n,k) are Stirling numbers of the first kind. - _Mircea Merca_, Apr 06 2013 %t A049447 lst={};Do[f=StirlingS2[n, 9];AppendTo[lst, f], {n, 9, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008 *) %t A049447 CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x) (1 - 9 x)), {x, 0, 25}], x] (* _Vladimir Joseph Stephan Orlovsky_, Jun 20 2011 *) %t A049447 StirlingS2[Range[9,30],9] (* _Harvey P. Dale_, Dec 12 2022 *) %Y A049447 Cf. A000225, A000392, A000453, A000481, A000770, A000771, A049434. %K A049447 easy,nonn %O A049447 9,2 %A A049447 _Wolfdieter Lang_