This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049451 #122 Mar 18 2024 07:43:55 %S A049451 0,4,14,30,52,80,114,154,200,252,310,374,444,520,602,690,784,884,990, %T A049451 1102,1220,1344,1474,1610,1752,1900,2054,2214,2380,2552,2730,2914, %U A049451 3104,3300,3502,3710,3924,4144,4370,4602,4840,5084,5334,5590,5852,6120,6394,6674,6960,7252,7550,7854 %N A049451 Twice second pentagonal numbers. %C A049451 From _Floor van Lamoen_, Jul 21 2001: (Start) %C A049451 Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,4,... . The spiral begins: %C A049451 . %C A049451 52 %C A049451 . \ %C A049451 33--32--31--30 51 %C A049451 / . \ \ %C A049451 34 16--15--14 29 50 %C A049451 / / . \ \ \ %C A049451 35 17 5---4 13 28 49 %C A049451 / / / . \ \ \ \ %C A049451 36 18 6 0 3 12 27 48 %C A049451 / / / / / / / / %C A049451 37 19 7 1---2 11 26 47 %C A049451 \ \ \ / / / %C A049451 38 20 8---9--10 25 46 %C A049451 \ \ / / %C A049451 39 21--22--23--24 45 %C A049451 \ / %C A049451 40--41--42--43--44 %C A049451 (End) %C A049451 Number of edges in the join of the complete bipartite graph of order 2n and the cycle graph of order n, K_n,n * C_n. - _Roberto E. Martinez II_, Jan 07 2002 %C A049451 The average of the first n elements starting from a(1) is equal to (n+1)^2. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003 %C A049451 If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of (n-4)-subsets of X having either one element or two elements in common with Y. - _Milan Janjic_, Dec 28 2007 %C A049451 With offset 1: the maximum possible sum of numbers in an N x N standard Minesweeper grid. - _Dmitry Kamenetsky_, Dec 14 2008 %C A049451 a(n) = A001399(6*n-2), number of partitions of 6*n-2 into parts < 4. For example a(2)=14 where the partitions of 6*2-2=10 into parts < 4 are [1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,3], [1,1,1,1,1,1,2,2], [1,1,1,1,1,2,3], [1,1,1,1,2,2,2], [1,1,1,1,3,3], [1,1,1,2,2,3], [1,1,2,2,2,2], [1,1,2,3,3], [1,2,2,2,3], [2,2,2,2,2], [1,3,3,3], [2,2,3,3]. - _Adi Dani_, Jun 07 2011 %C A049451 A003056 is the following array A read by antidiagonals: %C A049451 0, 1, 2, 3, 4, 5, ... %C A049451 1, 2, 3, 4, 5, 6, ... %C A049451 2, 3, 4, 5, 6, 7, ... %C A049451 3, 4, 5, 6, 7, 8, ... %C A049451 4, 5, 6, 7, 8, 9, ... %C A049451 5, 6, 7, 8, 9, 10, ... %C A049451 and a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - _R. J. Mathar_, Jun 30 2013 %C A049451 a(n)*Pi is the total length of 3 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A016957. The spiral length ratio rounded down [floor(L(n)/L(1))] is A001651. See illustration in links. - _Kival Ngaokrajang_, Dec 27 2013 %C A049451 Partial sums give A114364. - _Leo Tavares_, Feb 25 2022 %C A049451 For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+1; {2, 2n-1, 1, 4, 1, 2n-1, 2, 18n+2}]. - _Magus K. Chu_, Oct 13 2022 %D A049451 L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12. %H A049451 Ivan Panchenko, <a href="/A049451/b049451.txt">Table of n, a(n) for n = 0..1000</a> %H A049451 Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, <a href="https://arxiv.org/abs/2403.10500">A lozenge triangulation of the plane with integers</a>, arXiv:2403.10500 [math.NT], 2024. %H A049451 Kival Ngaokrajang, <a href="/A049451/a049451.pdf">Illustration of 3 points circle center spiral</a>. %H A049451 Leo Tavares, <a href="/A049451/a049451.jpg">Illustration: Double Hexagonal Trapezoids</a>. %H A049451 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A049451 a(n) = n*(3*n+1). %F A049451 G.f.: 2*x*(2+x)/(1-x)^3. %F A049451 Sum_{i=1..n} a(i) = A045991(n+1). - _Gary W. Adamson_, Dec 20 2006 %F A049451 a(n) = 2*A005449(n). - _Omar E. Pol_, Dec 18 2008 %F A049451 a(n) = a(n-1) + 6*n -2, n > 0. - _Vincenzo Librandi_, Aug 06 2010 %F A049451 a(n) = A100104(n+1) - A100104(n). - _Reinhard Zumkeller_, Jul 07 2012 %F A049451 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 4, a(2) = 14. - _Philippe Deléham_, Mar 26 2013 %F A049451 a(n) = A174709(6*n+3). - _Philippe Deléham_, Mar 26 2013 %F A049451 a(n) = (24/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - _Bruno Berselli_, Jun 04 2013 - after the similar formula of _Vladimir Kruchinin_ in A002411 %F A049451 a(n) = A002061(n+1) + A056220(n). - _Bruce J. Nicholson_, Sep 21 2017 %F A049451 a(n) = Sum_{i = 2..5} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - _Bruno Berselli_, Jul 04 2018 %F A049451 E.g.f.: x*(4 + 3*x)*exp(x). - _G. C. Greubel_, Sep 01 2019 %F A049451 a(n) = A003215(n) - A005408(n). - _Leo Tavares_, Feb 25 2022 %F A049451 From _Amiram Eldar_, Feb 27 2022: (Start) %F A049451 Sum_{n>=1} 1/a(n) = 3 - Pi/(2*sqrt(3)) - 3*log(3)/2. %F A049451 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) + 2*log(2) - 3. (End) %F A049451 a(n) = A001105(n) + A002378(n). - _Torlach Rush_, Jul 11 2022 %e A049451 From _Dmitry Kamenetsky_, Dec 14 2008, with slight rewording by Raymond Martineau (mart0258(AT)yahoo.com), Dec 16 2008: (Start) %e A049451 For an N x N Minesweeper grid the highest sum of numbers is (N-1)(3*N-2). This is achieved by filling every second row with mines (shown as 'X'). For example, when N=5 the best grids are: %e A049451 . %e A049451 X X X X X %e A049451 4 6 6 6 4 %e A049451 X X X X X %e A049451 4 6 6 6 4 %e A049451 X X X X X %e A049451 . %e A049451 and %e A049451 . %e A049451 2 3 3 3 2 %e A049451 X X X X X %e A049451 4 6 6 6 4 %e A049451 X X X X X %e A049451 2 3 3 3 2 %e A049451 . %e A049451 each giving a total of 52. (End) %t A049451 Table[n(3n+1), {n,0,55}] (* or *) CoefficientList[Series[2x(2+x)/(1-x)^3, {x,0,55}], x] (* _Michael De Vlieger_, Apr 05 2017 *) %o A049451 (Haskell) a049451 n = n * (3 * n + 1) -- _Reinhard Zumkeller_, Jul 07 2012 %o A049451 (PARI) a(n)=n*(3*n+1) \\ _Charles R Greathouse IV_, Sep 24 2015 %o A049451 (Magma) [n*(3*n+1): n in [0..55]]; // _G. C. Greubel_, Sep 01 2019 %o A049451 (Sage) [n*(3*n+1) for n in (0..55)] # _G. C. Greubel_, Sep 01 2019 %o A049451 (GAP) List([0..55], n-> n*(3*n+1)); # _G. C. Greubel_, Sep 01 2019 %o A049451 (Python) [n*(3*n+1) for n in range(60)] # _Gennady Eremin_, Feb 27 2022 %Y A049451 Cf. A000567, A001105, A002378, A005449, A033580, A049450. %Y A049451 Similar sequences are listed in A316466. %Y A049451 Cf. A003215, A005408, A114364. %K A049451 nonn,easy %O A049451 0,2 %A A049451 Joe Keane (jgk(AT)jgk.org)