This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049564 #18 Jul 20 2025 08:19:20 %S A049564 2,7,23,31,47,71,73,79,89,103,127,151,167,191,199,223,233,239,263,271, %T A049564 311,337,359,367,383,431,439,463,479,487,503,599,601,607,631,647,719, %U A049564 727,743,751,823,839,863,881,887,911,919,937,967,983,991,1031,1039 %N A049564 Primes p such that x^32 = 2 has a solution mod p. %C A049564 Complement of A059349 relative to A000040. - _Vincenzo Librandi_, Sep 14 2012 %H A049564 R. J. Mathar, <a href="/A049564/b049564.txt">Table of n, a(n) for n = 1..1000</a> %H A049564 <a href="/index/Pri#smp">Index entries for related sequences</a> %e A049564 0^32 == 2 (mod 2). 3^32 == 2 (mod 7). 11^32 == 2 (mod 23). 8^32 == 2 (mod 31). 22^32 == 2 (mod 47). 29^32 == 2 (mod 71). 4^32 == 2 (mod 73). 6^32 == 2 (mod 79). 6^32 == 2 (mod 89). - _R. J. Mathar_, Jul 20 2025 %t A049564 ok[p_]:= Reduce[Mod[x^32 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* _Vincenzo Librandi_, Sep 14 2012 *) %o A049564 (Magma) [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^32 eq 2}]; // _Vincenzo Librandi_, Sep 14 2012 %Y A049564 Cf. A000040, A059349. %K A049564 nonn,easy %O A049564 1,1 %A A049564 _N. J. A. Sloane_